

Simulating Dynamic Systems

With Event Relationship Graphs

Donna L. Schruben
Lee W. Schruben

 9th – Edition

 SIGMA code download at www.sigmawiki.com

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

x

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

i

CONTENTS

SIGMA v
Hardware Recommendation v
File Name Extensions v

Chapter 1 SIGMA: Overview & Installation 1
1.1 The SIGMA Modeling Environment 1
1.2 Single-step Installing and Uninstalling SIGMA 1
1.3 A Quick Tour of SIGMA 2

Chapter 2 Discrete Event System Modeling 6
2.1 Background and Terminology for Systems Modeling 6

2.1.1 Systems 6
2.1.2 Models 8
2.1.3 Model Verification 9

2.2 Discrete Event Systems and Simulations 10
2.3 Event Graphs 13
2.4 Verbal Event Graph 16
2.5 Visual Power of Event Graphs 17
2.6 SIGMA 17
2.7 Exercises 18

Chapter 3 A Tutorial on the Basics of SIGMA 21
3.1 Starting a SIGMA Session 21
3.2 The SIGMA Environment 21
3.3 Exploring Our Carwash Model 22

3.3.1 State Variables 24
3.3.2 Vertices 24
3.3.3 Edges 25
3.3.4 Editing the Carwash Model 27

3.4 Using Text Files 27

Chapter 4 Running A SIGMA Simulation 29
4.1 Running the Model 29
4.2 Run Options 31
 4.2.1 Description 31
 4.2.2 Output File 31
 4.2.3 Run Modes 31
 4.2.4 Ending Conditions 32
 4.2.5 Trace Variables 32
 4.2.6 Initial Attributes 32
 4.2.7 Random Seed 33
 4.2.8 Output Plot 33
 4.2.9 Command Buttons 35
4.3 Exercises 35

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

ii

Chapter 5 Event Graph Modeling 37
5.1 Enrichments to Our Basic Model 37

5.1.1 Multiple Identical Parallel Servers: BANK1.MOD 37
5.1.2 Batched Service: BATCHSIZ.MOD 39
5.1.3 Rework: REWORK1.MOD 39
5.1.4 Limited Waiting Space: BUFFERQ.MOD 40
5.1.5 Assembly Operations: ASSEMKIT.MOD 42
5.1.6 Different Servers Working in Parallel: 42

SLOFAST0.MOD SLOFAST1.MOD
5.1.7 Periodic Resource Unavailability: FAILURE.MOD 43

5.2 Event Cancellation 45
5.2.1 Closing Time: CLOSEIT.MOD 45
5.2.2 Server with Intermittent Service Failures: BRKDN.MOD 46

5.3 Event Parameters and Edge Attributes 48
5.3.1 Many Servers of Many Types: SLOFAST2.MOD 49
5.3.2 Multiple Servers, One Line, Waiting Times: BANK2.MOD 50
5.3.3 Limited Rework: REWORK2.MOD 54
5.3.4 Generalized Assembly Operations: ASSEMKIT.MOD 54
5.3.5 Sequential Service with Blocking: 55

TWOQUES.MOD, TWOQUES1.MOD, and TANDQ.MOD
5.4 Multiple Resources 56
5.5 A Problem in Finance: BONDRATE.MOD 56
5.6 Project Management (PERT/CPM): PERT.MOD 58
5.7 Modeling Transient Entities 60

5.7.1 Little’s Law 60
5.7.2 Generalizing the Notion behind Little’s Law: DELAY.MOD 61

5.8 Programming with Event Graphs 62
5.8.1 Boolean Variables 62
5.8.2 Conditional Expressions (If-Then-Else) 63
5.8.3 Do, While, and Nested Loops 64

5.9 Model Complexity and Model Size 66
5.10 Continuous Time Simulations: FISHTANK.MOD 66
5.11 Process Modeling 80

5.11.1 GPSS 68
5.11.2 SIMAN.MOD, SIMAN1.MOD and SIMAN2.MOD 69
5.11.3 Petri Net Simulation: PETRINET.MOD 70

5.12 Exercises 71

Chapter 6 Building Models, Verifying Simulations, and 77

Sharing the Results of Simulation Experiments

6.1 Creating and Editing an Event Graph 77

6.1.1 Create Process Mode 77
6.1.2 Create Single Edge Mode 77
6.1.3 State Variables 77
6.1.4 Editing Vertices 78
6.1.5 Editing Edges 79
6.1.6 Moving a Simulation Graph 81
6.1.7 Copying Event Graph Models 81
 6.1.7.1 SIGMA User Tools 82
6.1.8 Saving SIGMA Models and Output Plots 82

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

iii

6.2 Dynamic Run-Time Model Building and Analysis 82

6.2.1 Changing Value of State Variable Values During Run 83
6.2.2 Changing Edges and Vertices During Run 84
6.2.3 Adding and Deleting Edges/Vertices During Run 84

6.3 Model Enrichment and Logic Checking 85
6.3.1 Setting up the Logic Checking Environment 85
6.3.2 Starting a Logic Checking Run 85

6.4 Automatic Translation of SIGMA Model 85
6.4.1 English Translation 85
6.4.2 Translate to C 86

6.5 Capturing a Simulation and Its Results 87
6.5.1 Printing Event Graphs, Simulation Plots, and Output Files 87
6.5.2 Using Spreadsheets and Word Processors 87

6.6 Exercises 87

Chapter 7 Using SIGMA Functions 91

7.1 Summary of SIGMA Functions 91
7.2 Reading Data (and Code) from Your Disk 93

7.2.1 Reading Data from Tables 94
7.2.2 Changing Code from Data files 94
7.2.3 Trace Driven Simulations 95

7.3 Interactive Execution 95
7.4 Bookkeeping Functions 95
7.5 Mathematics Functions 96
7.6 Cycling using the MOD function 96
7.7 Using Ranked Lists 97

7.7.1 Example: Sorting Data (SORT.MOD) 98
7.7.2 Example: A Priority Queue (PRIORITYQ.MOD) 98
7.7.3 Example: Time-Constrained Processing (TIMEOUT.MOD) 99
7.7.4 Example: A General Network of Queues or Jobshop 100

7.7.4.1 NETWORK.MOD 101
7.7.5 Example: Using the Conditional GET function, CGET 105

7.8 Generating Random Variables 107
7.9 Statistical Functions 107
7.10 Exercises 109

Chapter 8 Building Animations 115

8.1 Perspective and Basic Principles 115
8.2 Classes of Animated Objects 115
8.3 Tutorial: Animating Resident Entities 118
8.4 Tutorial Continuation: Animating Transient Entity Motion. 122

Chapter 9 Modeling Input Processes 127

9.1 Randomness 127
9.2 Trace Driven Simulations 127
9.3 Random Number Generators 128

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

iv

9.4 Using Empirical Input Distributions 129
9.5 Using Parametric Input Distributions 129
9.6 Modeling Dependent Input 131
9.7 Sources of Data 131
9.8 Variance Reduction 133
9.9 Using Multiple Random Number Streams 133
9.10 Methods for Generating Random Variates 133

9.10.1 Distribution Function Inversion 133
9.10.2 Other Methods 135
9.10.3 Generating Non-Homogeneous Poisson Processes 135

9.11 Exercises 137
Chapter 10 Graphical & Statistical & Output Analysis 139
10.1 Keeping a Perspective 139
10.2 Elementary Output Charts 140

10.2.1 Step and Line Plots 149
10.2.2 Array Plots 141
10.2.3 Scatter Plots 141
10.2.4 Histograms 142

10.3 Advanced Graphical Analysis 142
10.3.1 Detecting Trends using Standardized Time Series 142
10.3.2 Dependencies 145

10.4 Using Statistics 145
10.5 Standardized Time Series 146

Chapter 11 Generating Source Code for SIGMA Models 151
and Running Simulations from a Spread Sheet

11.1 Generating C Programs from SIGMA Models 151
11.2 Compiling SIGMA-generated C code 152
11.3 Running Large Experiments using Batch Files 153
11.4 Running a SIGMA simulation from a Spread Sheet 155
 11.4.1 A Simple Spreadsheet User Interface 156
 11.4.2 A More Elegant Spreadsheet Interface using VBA 161
 11.4.3 Tutorial for the Service Center Spreadsheet Simulator 164
 11.4.4 Creating the Interface 165
11.5 Replacing the SIGMA Pseudo-Random Number Generator 194
11.6 Exercises 194
Chapter 12 Advanced Programming Techniques 196
12.1 General Starting and Ending Conditions 196
12.2 Simultaneous Parallel Replications 196
12.3 Event Graph Reduction 198
12.4 Using Arrays of Arbitrary Dimension 200
12.5 Eliminating Event Scheduling 201
12.6 Exercise 202

Appendix A: Event Execution Sequence 204

Appendix B: Reading SIGMA-Generated C Programs 206

Appendix C: Overview of Visual Basic for Applications 221

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

v

SIGMA

SIGMA is based on the simple and intuitive Event Relationship Graph (sometimes called an ERG or Event Graph)
approach to simulation modeling. The SIGMA project began as an effort to implement the notion of Event Relationship
Graphs on personal computers and has evolved into a powerful and practical method for simulation modeling. SIGMA,
the Simulation Graphical Modeling and Analysis system, is an integrated, interactive approach to building, testing,
animating, and experimenting with discrete event simulations, while they are running. SIGMA is specifically designed to
make the fundamentals of simulation modeling and analysis easy. SIGMA is able to translate a simulation model
automatically into fast C source code that can be compiled and linked to the sigmalib.lib library to run from a spreadsheet
or web interface. SIGMA can also write a description of a simulation model in English. SIGMA was developed without
external or University funding.

Hardware Recommendations

SIGMA runs on specific versions of Microsoft Windows (Version 3.1/9+/0+/NT/XP or previous). Any computer capable
of running these versions of Windows will run SIGMA. To take full advantage of SIGMA, the Windows' spreadsheet
program, Excel, and a word processor are useful. A Microsoft Visual C/C++ Compiler Version 6.0 will allow you to
compile SIGMA-generated C programs; there is no guarantee the compiled C code will run in other operating systems.

File Name Extensions

The specific function of SIGMA files are identified by the extensions to their filenames as in following table. .

Extension File Type Indicated

.BAK

Backup copy of the last saved model

.BAT Batch files

.BMP Bitmaps used for animations

.C Source code in C

.DAT Data files for SIGMA models

.EXE Executable programs

.EXP Experiment file for batched runs (chpt. 11)

.H Source code in C

.LIB SIGMA C Function Library

.MOD Sample SIGMA models

.OUT SIGMA output files (if any)

©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

vi

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

1

1

SIGMA: Overview & Installation

Chapter 1 begins with an overview of the new SIGMA software system. Next, instructions for installing the software are
given. This is followed by a brief tour of SIGMA, which will acquaint you with some of its basic features.

1.1 The SIGMA Modeling Environment

SIGMA is a unique and powerful simulation environment. Developed primarily for discrete event simulations, SIGMA
has been proven able to represent any computer program, with modeling power referred to in computer science as Turing
Complete.
 SIGMA is based on the concept of an Event (Relationship) Graph. Event Graphs graphically capture the events
taking place within a system and the relationships among these events. While Event Graphs may look similar to flow
graphs, they are very different: Event Graphs are relationship graphs. Thus, a simple model can represent a very large and
complex system.
 SIGMA’s most striking feature is that simulation models can be created, enriched, and edited while they are
running. Events can be added, altered, or even deleted during a simulation run. Logic can be changed and errors corrected
without stopping a run to change code and recompile. You can even pause and "replay" interesting events. Using SIGMA,
a simulation model can be developed and verified in a fraction of the time it would take using conventional simulation
languages.
 Animation support is fundamentally different in SIGMA than in other simulation modeling environments.
Animations are not created from simulation models using conventional add-on software; in SIGMA, the animation and
the simulation model are identical.
 In addition to graphical modeling, analysis, and animation, SIGMA also includes state-of-the-art graphical data
tracking tools and allows pictures, graphs, plots, and data to be pasted into spreadsheets and word processors.
 For speed and portability, SIGMA models can be automatically translated (with a mouse click) into a fast C
code. Not only does this code allow models to run thousands of times faster, models can then be run from a spreadsheet
and multiple experimental runs can be batched together. A SIGMA model can even write a description of itself in English.
 Multiple SIGMA sessions can be run concurrently. You can copy and paste objects from one modeling session to
another. In fact, models can be developed in one SIGMA session and then graphically integrated into another simulation
model while that model is executing.
 SIGMA supports the full simulation model life cycle: from model building and testing to output analysis,
animation, documentation, and report writing. Discrete event simulation model building has never been easier, and the
results from simulations have never before been so easy to observe and understand.

1.2 Single-step Installing and Uninstalling SIGMA

If you already have a copy of SIGMA.EXE on your computer, you may need to replace it with an updated
version. If you have the installation CD, follow the READTHIS.TXT instructions as follows.

INSTALL: Copy the entire CD into your C drive (creating a folder called C:\SIGMA with three subfolders).

UNINSTALL: Simply erase the C:\SIGMA folder and all subfolders.

Sigma does not write anything into the Windows Operating System Registry.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

2

1.3 A Quick Tour of SIGMA

Chapter 3 contains detailed instructions for using SIGMA. To get a brief overview of the software, try
the following steps:

1. Start a SIGMA Session. Click the Start button on the taskbar. Locate SIGMA from among your programs and click
on the SIGMA button. The window that appears is the simulation graph window. You are now in SIGMA.

2. Get into Select or Edit mode. Your mouse pointer will look like a plus sign enclosed by a circle, ⊕, when it is in
the simulation graph window. This shape indicates the Create Process mode. If you click the right mouse button,
the mouse pointer will assume an arrow shape,, which indicates Select or Edit mode. Click the right mouse
button and get into Select or Edit mode.

3. Read in a model. Click once on the File menu, move the mouse over the Open command, and then click on the
Event Graph command. A dialog box will appear. Scroll through the list of file names until you see
CARWASH.MOD. Double-click on this model, which is a simple simulation of an automatic carwash with only two
state variables: QUEUE, the number of cars waiting in line, and SERVER, the status of the machine, 0 = BUSY and 1
= IDLE. This model is represented in Figure 1.1.

NETWORK USERS: If you are running SIGMA from a network server, your default drive is probably write-protected.
Thus, you will get a system error message if you run the simulation as described in Step 4. You must add a drive letter
before the output file name in the Run Options dialog box. For example, you should change UNTITLED.OUT to
C:\UNTITLED.OUT so you can write the output to your C: drive. (Click on the Options command under the Run
menu. In the Run Options dialog box, add the drive letter to the name of the file in the Output File text box. Next,
click on the OK button and proceed to Step 4.) You should not use a floppy drive as your default drive as this will slow
the running of your simulation considerably.

Figure 1.1: A Simulation Model of a Carwash, CARWASH.MOD

WARNING: You should not use a floppy drive or a write-protected network drive as your default drive.

 Run Start

 Leave

 Enter

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

3

4. Run the simulation. Click once on the Options command in the Run menu. The Run Options dialog box will

appear. Click the OK & Run button at the bottom of this dialog box to start the run. The green button located at the
bottom right also starts the run. (Respond OK if a dialog box appears with the question "Replace existing
UNTITLED.OUT?" and No if asked to “Save changes to CARWASH.MOD.”) As the model executes, you will see a
logical animation of the simulation graph. (Notice that the value of the variable, QUEUE, is displayed above the
ENTER vertex.) A simulation plot showing the graphical output for CARWASH.MOD will also appear. The numerical
output will be written on your disk in a file called UNTITLED.OUT. To incrementally slow execution, press the
[F2]. Key; press [F3]. to resume speed.

5. View output file. After the simulation run is complete, a dialog box will appear asking if you want to view the output
trace now. Respond by clicking the Yes button.

The output from the simulation will appear in a third window titled UNTITLED.OUT. To see this material in
detail click the Maximize button. Afterward click the output Close button. Press [Shift] and [F4] to return to the
simulation graph and simulation plot windows or press the Windows/Tile command.

6. Change the type of output plot. Double-click anywhere within the area of the simulation plot window. An Output
Plots dialog box will appear. Click the down arrow for the Plot Type drop-down list to see the various plot types
available to you; and click on Histogram. Next, click on the OK button at the bottom of the dialog box. The output
will be graphically represented as a histogram. Open the Output Plots dialog box again by double-clicking on the
histogram and change the plot type back to Step Plot.

7. Translate model to source code. Activate the simulation graph window by clicking anywhere within that window.

Next, click on the Translate command in the File menu. Two translation choices are available: English and C.
You can translate your model with the click of a mouse. When you click on the English option; a dialog box will
appear with the file name highlighted (CARWASH). Click the OK button to confirm the file name. Respond Yes if you
are asked to replace an existing file and Yes when asked to see the translation now. Use the scroll bars to view the
entire file and the Close button to close the translated file window. Next press the Windows/Tile command to
view all the simulation graph and simulations plot windows

8. Examine the Event Graph. To see the details of the carwash Event Graph, double-click on the vertices (balls) and

edges (arrows) in the simulation graph window. Click the Cancel button at the bottom of each Edit Vertex or Edit
Edge dialog box, or click Close in the multiple edge dialog box you see after clicking on the double edge between
the START and LEAVE vertices.

9. Create another vertex while the model is running. With the simulation graph window active, open the Run Options

dialog box under the Run menu. Increase the Stop Time to 10000 by dragging the mouse across the Stop Time
text box and entering 10000. Press the OK & Run button to start the simulation. Click OK if asked to replace existing
CARWASH.OUT and NO if asked to save changes to the model. You may want to close the Trace Window, if it is
active, to get a better view of the plot window. Look at the value of QUEUE in the simulation plot window. Click
anywhere within the simulation graph window to activate it, and then click the right mouse button to get into Create
Process mode. Click the left mouse button once to add a vertex. Click the right mouse button to get back into
Select or Edit mode. Double-click on the newly-created vertex to open the Edit Vertex dialog box. Under the
State Change(s) text box, enter QUEUE=80; then press Execute. The QUEUE in the simulation plot window will
increase dramatically. Click the red Stop Run tool at the lower right of the screen to stop the run. Press [Enter]
several times to confirm ending the run and decline when asked to view output.

10. Run an animation. Click the Maximize button for the simulation graph window. Click the Open/Event Graph

command under the File menu. Press No when asked to save changes to CARWASH.MOD. Locate the model called
ROBOT.MOD and double-click on it to open it. Press the green Start Run tool to begin the simulation. If asked to
replace existing ROBOT.OUT, press OK. Press Yes if a warning message appears. If you have a fast machine, you
may want to slow down the animation by pressing [F2]. You also may want to move the Trace Window if it is in

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

4

the way. Press the red Stop Run tool to end the simulation. Press [Enter] in response to the messages that appear
at the end of the simulation.

11. Another visual representation of the simulation is as a process flowchart, run FLOWPROC.MOD to see how this

looks. Double clicking on a vertex and changing its shape from a circle to a desired flowcharting symbol in the
dropdown box is all that is required to create process flow charts.

12. Exit SIGMA. Exit by clicking on the SIGMA Close button. Do not save your model! Make sure to click the No

button, when asked to save changes to the model.

 You are now ready to learn how to build your own simulations with SIGMA. This can be a great deal of fun.
Enjoy!

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

5

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

6

2

Discrete Event System Modeling

A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and
flow with it

FIRST LAW OF MENTAT∗

This chapter contains an introduction to the key concepts and terminology of discrete event simulation. The event graph, a
method of concisely organizing the elements of a discrete event simulation, is introduced. Using a simple waiting line as
an example, an elementary event graph is developed and explained. The future events list, which is the master scheduler
of events in a discrete event simulation, is examined in detail. A verbal description of an event graph is introduced as a
first step in developing a formal event graph.

2.1 Background and Terminology for Systems Modeling

Here we will use computer simulation to study the dynamic behavior of systems –i.e., how systems change over time. Our
focus will be on those systems where the status of a system changes at a particular instant of time; such systems are called
discrete event systems. Discrete event systems can be found in areas as diverse as manufacturing, transportation,
computing, communications, finance, medicine, and agriculture. Engineers, scientists, managers, and planners use
simulation methodologies to design and test new systems and to evaluate existing ones, thus avoiding the expense and
risks of physical prototypes and pilot studies.

2.1.1 Systems

It will be sufficient for our purposes to define a system as

a collection of entities that interact with a common purpose according to sets of laws and
policies.

The system may already exist, or it may be proposed. Using simulation, even theoretical systems can be studied. We
intentionally do not define a system by the specific entities in it. Rather, we define a system by its purpose. Thus, we
speak of a communications system, a health care system, a production system, etc. Using a functional definition of a
system helps us avoid thinking of a system as having a fixed structure. Consequently, we view a system in terms of how it
ought to function rather than how it has traditionally worked in the past. To design a new system it is necessary to free our
thinking from the status quo.
 The entities making up the system may be either physical or mathematical. A physical entity might be a patient
in a hospital or a part in a factory; a mathematical entity might be a variable in an equation.
 When developing simulation models of systems, it is useful to classify entities as being either resident entities or
transient entities. Resident entities remain part of the system for long intervals of time, whereas transient entities enter
into and depart from the system with relative frequency. In a factory, a resident entity might be a machine; a transient
entity might be a part. Depending on the level of detail desired, a factory worker might be regarded as a transient entity in
one model and a resident entity in another.
 In describing a particular aspect of the dynamic behavior of a system, it is often useful to focus on the cycles of
the resident entities. For example, we might describe the busy-idle cycles of machines or workers. Alternatively, we might
focus on the paths along which transient entities flow as they pass through the system (e.g., parts moving through a
factory). Transient entity system descriptions tend to be more detailed (and more informative) than resident entity
descriptions. Each type of modeling has advantages: modeling resident entity cycles tends to be easy and efficient, while

∗ Dune, by Frank Herbert, Chilton Book Company: Radnor, PA. 1965.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

7

modeling the details of transient entity flow gives more information. Typically, a mixture of both viewpoints is used, but
one or the other predominates.
 In systems where there are relatively few resident entities and a great many transient entities, it is usually most
efficient to study the cycles of the resident entities. Examples include semiconductor factories with thousands of wafers,
communication systems with millions of messages, and transportation systems with tens of thousands of vehicles. In
simulating such systems, the cycles of resident entities might be described by the values of only a few variables, while the
flow of transient entities might require a great many variables to describe. On the other hand, systems where there are
only a few transient entities and many resident entities (a power line inspection system or an airline maintenance facility)
may be efficiently studied by examining the flow of transient entities.
 It will often be the case that an initial model consisting only of resident entities is appropriate. Thus, first-cut
system experiments can be done with a simple and efficient model. After a design has been roughed out and more details
are desired, the model can be enriched into a transient entity flow model. Enriching the model to explicitly include
transient entities generally makes the model larger, more complex, more prone to errors, and slower to execute. It may be
wiser to use detailed transient entity models only for final refinements of a design. A well-designed simulation may have
some sections that model only resident entity cycles and other sections that model the detailed flow of transient entities.
 Entities are described by their characteristics (referred to as attributes). Attributes can be quantitative or
qualitative. Moreover, they can be static and never change (the speed of a machine), or they can be dynamic and change
over time (the length of a waiting line). Dynamic attributes can further be classified as deterministic or stochastic
depending on whether or not the changes in their values can be predicted with certainty. It is sometimes useful to think of
entities as belonging in sets owned by other entities. For example, in a factory a set of parts might be waiting in a line
(queue) for a particular machine. Also, a set of machines (routing) might be required to process each part. Thus, each
machine owns a set of parts, and each part owns a set of machines.

Figure 2.1: The Entity/Attribute Hierarchy for a Health Care System

Health Care System

Regions

Hospitals

Clinics

Physicians

Patients

...

...
...

...

...

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

8

The level of detail with which we choose to describe a system determines whether a particular system component
is thought of as an entity or an attribute of some entity. For example, we can examine regional health care systems at
various levels. (See Figure 2.1.) We might think of the number of hospitals in the region as an attribute of the region. For
greater detail, we might want to consider each hospital as a separate entity with the clinics offered as attributes. At an
even finer level of detail, we might think of the clinics in the hospitals as distinct entities, with the physicians and patients
as attributes of each clinic. Still greater detail is obtained by thinking of individual physicians and patients as entities
described by their attributes of specialty, schedule, affliction, etc. The level of detail desired depends on our reasons for
studying the system. It would not make sense to model a nationwide health care system at the level of individual patients;
likewise, it would not be meaningful to model the laundry at a particular hospital from a national viewpoint.
 The rules that govern the interaction of entities in a system that are not under our control are called laws. Similar
laws are grouped in families, members of which are distinguished by parameters. Rules that are under our control are
called policies; a family of similar policies may be distinguished by the values of their factors. When we experiment to
determine the effects of changes in parameters, we are doing sensitivity analysis. When we experiment with changes in
factors, we are doing optimization or design. Sensitivity analysis might examine changes in the rate of patient demand for
an emergency room. Optimization in the same setting might focus on adjusting nurses' schedules to provide adequate
coverage during peak periods. Unlike the real world, in simulation studies both types of experiments are conducted in
much the same manner.
 Often throughout this book we will use examples of simple, random systems consisting of a waiting line with
one or more servers. (Notable exceptions are the financial risk analysis model, the critical path model, and the continuous
time simulation of an aquatic ecosystem found in Chapter 5.) These stochastic, dynamic queues are found in many of the
systems we are interested in studying: parts waiting for a machine, patients waiting for a doctor, jobs waiting for a
computer, messages waiting for transmission, etc. The resident entities in the system are the machines, doctors,
computers, data busses, . . . generically referred to as servers. The transient entities are the parts, patients, jobs, messages,
. . . generically referred to as customers. Although not as obvious, the waiting lines, buffers, and queues are also resident
entities in a queueing system. Laws describing the system might include the probability distribution of the time between
successive customer arrivals. Policies might include the number of servers, the amount of waiting space, and the priority
level different types of customers receive for service.
 The state of a system is a complete description of the system and includes values of all attributes of entities,
parameters of laws, factors for its policies, time, and what might be known about the future. The state space is the set of
all possible system states. A process is an indexed sequence of system states; typically the index is time, but it might be a
count of customers or some other system characteristic.

2.1.2 Models

We will define a model simply as

a system used as a surrogate for another system.

In typical computer simulation models, a system with mathematical entities is used as a surrogate for a system with
physical entities. In this book when we use the word system, without qualification, we are referring to a real or
hypothetical system that is the subject of the simulation study.
 Mathematical models are conceptual abstractions of a particular aspect of a system. The mathematics we will be
using include probability, statistics, and graphs. When we use the word model, without qualification, we will be referring
to a graphical description of a system called an event graph. Finally, simulations will refer to computer programs
developed from event graph models. Simulations will be our methodology for studying the model. A model serves as the
interface between a system and a methodology for studying the system.
 When evaluating a simulation, it is important to differentiate modeling a system from coding a model. Whether
or not a simulation is "good" is more or less objective. A good simulation is a completely faithful rendition of a good
model; nothing in the model is lost in the code. The process of testing if the simulation is good is called simulation
verification, which is discussed in more detail later. This is often much more complicated than verification of other types
of computer programs. However, there is no conceptual difficulty in defining a good program as being error free. Of
course, the most one can honestly certify about any computer program is that it currently has no known errors.
 Defining what constitutes a "good" model is much more subjective. A good model is based on good assumptions.
Good assumptions make the simulation more efficient or the system easier to understand while costing little in terms of
validity. Driving a good bargain between model simplicity and model validity is the essence of the art of modeling.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

9

 A purist view of validity is that a model will be valid as long as it is based on explicit assumptions and the
implications of the assumptions are well understood. From this academic viewpoint, a modeling error is not correctly
stating and applying all model assumptions. If we take the pragmatist's view of a good model as contributing to correct
decisions, it is possible to test the effects of including a particular detail or making a certain assumption by comparing the
behavior of the simulation with and without the detail or assumption. Simulation is one of the few methodologies that
allows testing the robustness of models with different assumptions. Perhaps the biggest danger in simulation modeling is
including too much detail in the model. An experienced consultant in the field once remarked that he could tell a novice at
simulation by the excessive amount of detail in his or her models.
 A technique for keeping model details at a reasonable level is to focus on the similarities among the entities in
the system rather than the differences. If transient entities (customers, jobs, messages, etc.) can be treated as identical, you
can develop a valid model that merely keeps track of the numbers of transient entities at various stages of their progress
through a system. This makes it unnecessary to have a detailed record for each individual entity. Such a model would
require updating relatively few integers (the counts) instead of creating and maintaining separate records for every
transient entity in the system. Similarly, treating resident entities (servers, machines, buffers, etc.) as identical allows you
to maintain counts of the numbers of resident entities in the various states of their process cycles rather than keeping a
record of the status of each entity. In situations where there are a great many transient entities in the system at one time, it
might be necessary to treat transient entities as identical. It is certainly more efficient to have a single integer variable that
counts transient entities than it is to create and maintain thousands of complete records.
 It is natural to notice differences between entities in a system. However, a valuable modeling skill is the ability to
recognize similarities. Differences are modeled only when they are essential to the validity of the study results. It is also
natural to include detail unless there are solid reasons for assuming that it can be omitted. When building simulation
models of complicated systems, it is good practice to require justification for including detail. Even when the differences
in entities are thought to be important, a skilled modeler will be able to define groups of entities that can be treated as
identical.
 Sometimes the activity of developing a simulation model has as much value as the model itself. Building a model
forces us to identify our objectives, determine constraints, quantify our knowledge, and expose our misconceptions. It
could be argued that a study has merit even if its recommendations are never implemented and that a simulation model
has value even if it never runs. Of course, this is of little comfort to the student who fails a homework assignment or an
engineer who must try to find another job. It is vastly more satisfying to professors and employers if the simulation model
runs and the recommendations from the study are adopted. The motivation for the development of event graphs was to
make simulation models easier to build and verify. With event graphs, it is much easier to verify that your simulation
program reflects the way you have modeled the system than it is to validate that the model actually can be used to imitate
the relevant behavior of the real system.

2.1.3 Model Verification

An absolutely valid simulation model with all the detail and behavior of real life is probably not attainable, or even
desirable. However, every simulation model should do what its creator intended. Ensuring that the computer code for the
simulation model does what you think it is doing is referred to as the process of model verification.
 There is a trade-off involved between validation and verification of a simulation model. Adding detail to a model
makes the code more complicated. If correctly implemented, this detail will perhaps improve model validity. However,
adding complex details can make code verification more difficult if not impossible. Identifying only the substantive
details that are important to include in a simulation model is important and often subject to negotiation.
 Really gross errors in a simulation code can be detected using standard statistical testing. For example, a classical
paired t-test between the means of samples from the real world and those from simulation runs might be conducted. (A
description of a t-test can be found in any introductory statistics textbook.) However, there may not be enough real-world
data to reject a hypothesis that the model and real world data have nearly the same parameters. Moreover, the data itself
may not be valid. (See the "Five Dastardly D's of Data" in Chapter 9.)
 Translating a model from computer code into clear language is a good exercise. It is interesting to contrast what
two different people think a model is doing. You can also compare what you think your model is doing with what it thinks
it is doing using the English translations generated by SIGMA.
 An excellent tool for helping to verify a simulation model is an informal exercise called a "Turing test," named
after a man who conjectured on the possibility of not being able to distinguish computing machines from real people. For
a Turing test, actual blank forms used in the day-to-day management of a system are filled in with either simulated or real
data. Only the blanks that are relevant for the purposes of the study are different. Managers and other people familiar with
the system are then asked to identify the real and simulated documents and tell how each form was identified. It is vital
that everyone know in advance that this exercise is likely to be repeated several times.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

10

 People familiar with these forms are usually more comfortable doing this exercise than they are in reviewing a
computer code, evaluating a statistical analysis, or even observing an animation. Just the process of determining what data
on each form are relevant to the study can make this exercise worthwhile.
 A typical experience with a Turing test has been that the manager can immediately identify most, if not all, of the
bogus forms! This is actually a good outcome; it indicates that the manager is paying attention, and it can lay the
foundation for effective communication. A non-technical manager "winning" the first round may also help diffuse any
antagonism that they may have developed toward the simulation project. What happens next is critical: when the manager
tells how the simulated data was identified, changes to the simulation model should be made and the exercise repeated. It
is the repetition of the exercise that is important, not the outcome of each iteration.
 Statistical analysis to assess whether or not the outcome of the exercise is likely to result from guessing is
presented in Schruben (1980). However, such formal analysis can actually be detrimental. It could easily inhibit
communication and alienate the manager by moving the discussion to the unfamiliar ground of mathematical statistics.

2.2 Discrete Event Systems and Simulations

As stated earlier, systems in which changes occur at particular instants of time are called discrete event systems. In a
simulation of a discrete event system, time is advanced in discrete (variable and often random length) steps to the next
interesting state change; uninteresting time intervals are skipped over. This coarse level of detail permits the modeling of
very large systems such as airports and factories.
 A description of the state of a discrete event system will include values for all of its numerical attributes as well
as any schedule it might have for the future. Changes in the state are called events. In a production system, events might
include the completion of a machining operation (the state of a machine would change from "busy" to "idle"), the failure
of a machine (the machine state would change to "broken"), the arrival of a repair crew (the machine state would change
to "under repair"), the arrival of a part at a machining center (the machine might again become "busy"), etc.
 The ability to identify the events in a discrete event system is an important skill, one that takes practice to
acquire. Initially, you might use the following simple steps as a guide to identify system events:

1. State the purpose of your system. Be aware that there might be several (conflicting) purposes.

2. State the objectives of your study.

3. Design, at least qualitatively, the experiments you might want to run with your simulation.
4. Identify the resident and transient entities in your system and their important attributes; assign names to

the attributes.

5. Identify the dynamic attributes and the circumstances that cause their values to change . . . these will be
the events.

 The building blocks of a discrete event simulation program are event procedures. Each event procedure makes
appropriate changes in the state of the system and, perhaps, may trigger a sequence of other events to be scheduled in the
future. Event procedures might also cancel previously scheduled events. An example of event cancelling might occur
when a busy computer breaks down. End-of-job events that might have been scheduled to occur in the future must now be
cancelled (these jobs will not end in the normal manner as originally expected).
 The event procedures describing a discrete event system are executed by a main control program that
operates on a master appointment list of scheduled events. This list is called the future events list and contains all of the
events that are scheduled to occur in the future. The main control program will advance the simulated time to the next
scheduled event. The corresponding event procedure is executed, typically changing the system state and perhaps
scheduling or cancelling further events. Once this event procedure has finished executing, the event is removed from the
future events list. Then the control program will again advance time to the next scheduled event and execute the
corresponding event procedure. The simulation operates in this way, successively calling and executing the next
scheduled event procedure until some condition for stopping the simulation run is met.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

11

The operation of the main simulation event scheduling and execution loop is illustrated in Figure 2.2.

Figure 2.2: Main Event-Scheduling Algorithm

Extended Example: We will follow the changes in a typical future events list by examining a simulation of a
machine center with three identical machines (numbered 0, 1, and 2) and two workers (worker 0 and worker 1).

The types of events that might occur in this example are the ARRIVAL of the next part at the machining center, a
machine "STARTing" or "FINISHing" work on a part, a BREAKDOWN of a machine, and a broken machine being
REPAIRED. An actual simulation model would, of course, have other types of events.

For each event that pertains to a specific machine and/or operator, the machine number followed by the operator
number (if appropriate) are listed as event attributes. At a particular time during a simulation run, the future events
list might look like the one pictured in Table 2.1. The future events are logically sorted according to times that events
are scheduled to occur. Here time will be measured in minutes.

The current time in this example is 3.00, and the ARRIVAL of a part has just occurred at the center. This ARRIVAL
event has "scheduled" the next ARRIVAL event to occur at time 3.37. We can determine the status of each machine
by scanning down the future events list and checking what lies in the future for each machine. (Recall that the
machine number is designated by the first event attribute.) Machine 0 is due to FINISH processing the part it is
currently working on at time 3.20, so machine 0 must be busy. Likewise, machine 1 is busy and due to FINISH
working on a part at time 3.40. Finally, machine 2 will be REPAIRED at time 3.43, so it is currently being fixed by
the repair crew. We can see from the future events list in Table 2.1 that when the part arrived at time 3.00 none of
the machines were available to start working on it. Thus, the part will join other parts in a queue waiting to be
processed.

Advance Clock to
Time of Next Event

Stop

Execute Event

Remove Event
from List

Initialize

Cancel Events

Change State

Schedule Event

State

Event List

Summary StatisticsNo Yes

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

12

Table 2.1: Future Events List for a System with Three Machines
(Time = 3.00)

 Time Event Type Event Attributes

(Current time) 3.00 ARRIVAL

 3.20 FINISH 0,1
 3.35 BREAKDOWN 1
 3.37 ARRIVAL
 3.40 FINISH 1,0
 3.43 REPAIRED 2
 9.01 BREAKDOWN 0

Note that machine 0 is due to experience its next BREAKDOWN at time 9.01 and machine 1 is due for a BREAKDOWN at
time 3.35 - before it can FINISH its current operation. Therefore, when machine 1 breaks down at time 3.35, the
FINISH event for this machine at time 3.40 will have to be cancelled.

To see how this machining center simulation might proceed, we will now advance the current time to 3.20 and
execute the FINISH event on machine 0. Looking at the second attribute of this FINISH event, we see that operator 1
becomes idle. Since we know that there is at least one part waiting, we can immediately START processing the next
part. A new START event for machine 0 has been scheduled to occur at the current time of 3.20 with operator 1. The
future events list is now like Table 2.2.

Table 2.2: Future Events List for a System with Three Machines
(Time = 3.20).

Time Event Type Event Attributes

(Current time) 3.20 FINISH 0,1
 3.20 START 0,1
 3.35 BREAKDOWN 1
 3.37 ARRIVAL
 3.40 FINISH 1,0
 3.43 REPAIRED 2
 9.01 BREAKDOWN 0

We next execute the START event for machine 0 at time 3.20 with operator 1. Suppose that a stored (or randomly
generated) machine processing time for machine 0 is 1.20 minutes, then the FINISH event for this machine will be
scheduled to occur 1.20 minutes from the current time of 3.20 or at time 4.40. The future events list after executing
the START event at time 3.20 is shown in Table 2.3.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

13

Table 2.3: Future Events List for a System with Three Machines
(Time = 3.20)

Time Event Type Event Attributes

(Current time) 3.20 START 0,1
 3.35 BREAKDOWN 1
 3.37 ARRIVAL
 3.40 FINISH 1,0
 3.43 REPAIRED 2
 4.40 FINISH 0,1
 9.01 BREAKDOWN 0

Next, we advance the time to 3.35 and execute the BREAKDOWN event for machine 1. This BREAKDOWN event will
cause the FINISH event for machine 1 scheduled at time 3.40 to be cancelled. We will assume here that the part is
destroyed when the machine breaks down and that the worker becomes available for other work. If it takes five
minutes for a repair crew to repair machine 1, the future events list after the BREAKDOWN occurs is like that in Table
2.4. (Note the REPAIRED event for machine 1 has been scheduled at 8.35, five minutes beyond the current time of
3.35.) The simulation will now advance to time 3.37 when the next ARRIVAL event will occur.

Table 2.4: Future Events List for a System with Three Machines
(Time = 3.35)

Time Event Type Event Attributes

(Current time) 3.35 BREAKDOWN 1
 3.37 ARRIVAL
 3.43 REPAIRED 2
 4.40 FINISH 0,1
 8.35 REPAIRED 1
 9.01 BREAKDOWN 0

 Do not worry if this all seems a bit mysterious for now. Discrete event simulation modeling is more than a
simple exercise in computer programming. It is initially somewhat confusing for everyone. You will soon discover that it
is relatively straightforward once you grasp the concept of an event and understand the relationships between events. For
this, we will use event graphs.

2.3 Event Graphs

The three elements of a discrete event system model are the state variables, the events that change the values of these state
variables, and the relationships between the events (one event causing another to occur). An event graph organizes sets of
these three objects into a simulation model. In the graph, events are represented as vertices (nodes) and the relationships
between events are represented as edges (arrows) connecting pairs of event vertices. Time sometimes elapses between the
occurrence of events.
 The basic unit of an event graph is an edge connecting two vertices. Suppose the edge represented in Figure 2.3
is part of an event graph. We interpret the edge between A and B as follows:

whenever event A occurs, it might cause event B to occur.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

14

Basically, edges represent the conditions under which one event will cause another event to occur, perhaps after a time
delay.

Figure 2.3: Simple Event Graph Edge

B A

 Using this notation, we can build a model that simulates a simple waiting line with one server (e.g., a ticket booth
at a theater, the drive-in window at a fast-food restaurant, etc.). For our example, we will model an automatic carwash
with one washing bay. The event graph of our carwash is represented in Figure 2.4.
 We will begin our examination of this graph by discussing each vertex. The RUN vertex models the initialization
of the simulation, the ENTER vertex models a car entering the carwash line, the START vertex models the start of service,
and the LEAVE vertex models the end of service.
 The state variables chosen to describe this system are:

SERVER = the status of the washing bay (busy, idle),
 initially set idle.

QUEUE = the number of cars waiting in line,
 initially set equal to zero.

To make our model more readable, we also define the constants, IDLE=1 and BUSY=0.

Figure 2.4: Simple Event Graph of a Carwash

RUN ENTER LEAVESTART

{Idle+1,Busy=0,
Server=Idle}

{Queue=Queue+1} {Server=Busy,
 Queue=Queue-1}

{Server=Idle}

Next, we will focus on the changes in the state variables, shown in braces. The simulation RUN is started by making the
washing bay at the carwash available for use {IDLE=1,BUSY=0,SERVER=IDLE}. Each time a car ENTERs the line, the
length of the waiting line is incremented {QUEUE=QUEUE+1}. When service STARTs, the washing bay is made busy
{SERVER=BUSY} and the length of the line is decremented {QUEUE=QUEUE-1}. Whenever a car has been washed and
LEAVEs the washing bay, the washing bay is again made available {SERVER=IDLE} to wash other cars.
 The dynamics of an event graph model are expressed in the edges of the graph. We read an event graph simply
by describing the edges exiting each vertex (out-edges). In-edges take care of themselves. Continuing with our example,
we look at each edge in Figure 2.4.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

15

The simulation RUN is started by having the first car ENTER the carwash (edge from RUN to ENTER). If the ENTERing
car finds the washing bay idle, service will START immediately (edge from ENTER to START). Each time a car ENTERs
the carwash, the next car will be scheduled to ENTER sometime in the future (edge from ENTER to ENTER). The
START service event will always schedule a car to LEAVE after that car has been washed (edge from START to LEAVE).
Finally, if there are cars waiting in line when a car LEAVEs, the washing bay will START servicing the next car right
away (edge from LEAVE to START).

 The self-scheduling edge (the loop) on the ENTER event is the conventional way of perpetuating successive
customer arrivals to the system. There will typically be some random time delay between customer arrivals.
 After looking at the carwash model, you may have guessed that the state changes for an event vertex are typically
very simple. Most of the action occurs on the edges of the graph. The conditions and delays associated with the edges of
the event graph are very important; it is on the graph edges that the logical flow and dynamic behavior of the model are
defined. For each edge in the graph we will need to define under what conditions and after how long one event might
schedule another event to occur.
 We will associate with each edge a set of conditions that must be true in order for an event to be scheduled. Also
associated with each edge will be a delay time equal to the interval until the scheduled event occurs. Time will be
measured in minutes for our examples. We have enriched the basic event graph to include edge conditions and edge delay
times (see Figure 2.5). This edge is interpreted as follows:

if condition (i) is true at the instant event A occurs, then event B will be scheduled to occur t minutes later.

Figure 2.5: Conditional Event Graph Edge with a Time Delay

B A ~
(i)t

If the condition is not true, nothing will happen, and the edge can be ignored until the next time event A occurs. You can
think of an edge as nonexistent unless its edge condition is true. If the condition for an edge is always true (denoted as
1==1), the condition is left off the graph. We will call edges with conditions that are always true unconditional edges.
Zero time delays for edges are not shown on the graph.
 While you are learning to read event graphs, it might be a good idea to use the edge interpretation in the previous
paragraph as a template for describing each edge. Once the edges in the graph are correct, the state changes associated
with each vertex are typically easy to check.
 Our carwash model with edge conditions and delay times is shown in Figure 2.6. The state variables SERVER and
QUEUE are now denoted by S and Q, respectively, and the status of S is indicated by 1 or 0 (IDLE=1, BUSY=0). In
addition, the time between successive car arrivals (probably random) is denoted by ta and the service time required to
wash a car is denoted by ts. When values of ta are actually needed, they might be obtained from a data file or generated
by algorithms like those in Chapter 9.

In Figure 2.6, state changes associated with each vertex are enclosed in braces and edge conditions in
parentheses. As you read the following description, identify a single edge with each sentence.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

16

Figure 2.6: Carwash Model with Edge Conditions and Delay Times

RUN ENTER LEAVESTART

{S=1} {Q=Q+1} {S=0, Q=Q-1} {S=1}

(Q>0)

(Q)

(S>0)~

t a

At the start of the simulation RUN, the first car will ENTER the system. Successive cars ENTER the system every ta
minutes. If ENTERing cars find that the server is available (S>0), they can START service. Once cars START service,
ts minutes later they can LEAVE. Whenever a car LEAVEs, if the queue is not empty (Q>0), the server will START
with the next car.

 Now re-read the above paragraph without looking at Figure 2.6. You will see that it is a concise description of
the behavior of a queueing system. With practice, a system description can be read easily from the edges of an event
graph. This is an excellent way to communicate the essential features of a simulation model and a good first step in model
validation. With experience in reading event graphs, it becomes easier to detect modeling errors. This graph represents a
completely defined simulation model. To run this model, only the starting and ending conditions for the run need to be
specified.

2.4 Verbal Event Graphs

Before designing your own event graph model, it is a vital that you develop a verbal description of your system. This
description would include state changes associated with each vertex along with a verbal description of each edge
condition and delay time on the graph. A verbal event graph for a generic single server queueing system is shown in
Figure 2.7.
 Developing a verbal description of your system is a necessary first step toward building a realistic and accurate
simulation model. It will help you conceptualize the major components in the system, determine the key events and their
interrelationships, and identify the state variables, edge conditions, and time delays necessary for the model. Note that
state variables will need to be defined that permit testing of all edge conditions in your verbal event graph. Once you have
constructed a detailed verbal description, the event graph model will be much easier to build.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

17

Figure 2.7: Verbal Event Graph of a Single Server Queue

2.5 Visual Power of Event Graphs

The visual modeling power of event graphs is most appreciated after one recognizes the complicated details involved in a
discrete event simulation. The fundamental concept in event graph modeling is to use a directed graph as a picture of the
relationships among the elements in sets of expressions characterizing the dynamics of the system. Each vertex of the
graph is identified with a set of expressions for the state changes that result when the corresponding event occurs. Each
edge in the graph identifies sets of logical and temporal relationships between a pair of events.

2.6 SIGMA

SIGMA is a general event graph modeling environment that facilitates the development of correct simulation code.
Reading an event graph facilitates model validation, and, since with SIGMA the model is the language, code verification
is much easier using SIGMA than using traditional discrete event simulation coding methods.
 Using modern simulation languages, it is quite possible to create complicated models of systems without the user
having any idea how the simulation program actually works. Indeed a prime objective of some special-purpose simulators
is to isolate the user completely from the simulation code. This is an advantage as long as the application does not extend
beyond the domain of the simulator. However, once a certain level of skill in simulation modeling has been reached, many
feel constrained by the inflexibility of high-level simulators.
 The objective of event graph modeling using SIGMA is to provide a user-friendly environment in which to build,
verify, and experiment with discrete event simulation models. Unlike most simulation software, SIGMA is designed to
remove all of the mystery in discrete event simulation. Depending on your version, you may have access to the full source
code of all SIGMA-generated simulation models. However, you can still choose to remain oblivious to the workings of
the simulation program. With SIGMA the choice is yours. Initially event graph modeling may seem a bit abstract, but you
will soon find it to be a simple yet powerful approach. SIGMA is suitable for both the beginner and the seasoned
professional. While SIGMA is easy to learn and easy to use, it is powerful enough to allow for real growth as modeling
skills evolve. Without learning any additional modeling tools, you will be able to model any discrete event system using
event graphs.
 Programming in the two dimensions of a graph has several advantages over traditional (line at a time) linear
coding. Loops, conditional branching, function calls, and even notorious goto's are all easily represented as edges on a
graph. In fact once you become familiar with SIGMA, you might consider using it as a general programming tool to
create code that has nothing to do with simulation modeling. You might find that graphically programming in a plane
makes more sense than writing code in the traditional linear method.
 SIGMA makes simulation modeling much easier than directly writing code. With SIGMA, you interact with a
simple graph like that in Figure 2.4. Details on edges (arrows) and event vertices (nodes) are available at the click of a
mouse.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

18

 SIGMA also has instant input checking. Unlike simple syntax checkers, SIGMA checks your computation by
actually executing expressions when they are entered. This helps to ensure that while running your model you will not
encounter frustrating spelling, syntax, or computation errors.
 Computer programs used for discrete event simulation are distinguished from other types of computer programs
by two fundamental characteristics. Discrete event simulation programs will have both logic for representing the passage
of time (they are dynamic as opposed to static) and logic for representing randomness (they are stochastic as opposed to
deterministic). Reflecting these two fundamental features of a discrete event simulation program, SIGMA does two
computations automatically; one computation models time while the other models randomness. In SIGMA, there are only
two variables you should not change: CLK, which represents the current value of simulated time, and RND, which
represents a randomly chosen number between zero and one.
 A program that has randomness but is static might be used to generate artificial data samples to study the
behavior of a statistical procedure; such a program is commonly referred to as a Monte Carlo simulation. Systems that are
modeled as continuously changing, such as chemical reactions, electrical pulses, and mechanical linkages, fall into the
realm of continuous simulations, which model the progression of change using differential or difference equations.
Continuous time simulations are typically dynamic but deterministic. An example of a stochastic continuous time
simulation is given in Chapter 5.

2.7 Exercises

2.7.1 Model Evaluation

Read a recent article where discrete event simulation models are used to solve real-world problems. Some of the
publications you might look at are Management Science, Interfaces, Industrial Engineering, Operations Research,
Material Handling, Medical Care, Computer Performance Evaluation, Expert Systems, and Simulation. Conference
proceedings in various fields of engineering also have articles about simulation; in particular, the Winter Simulation
Conference Proceedings is a good source.

Collect or create the following:

(a) Photocopies of the title page and abstract of the article (explicitly give the source).

(b) A brief statement of the objective of the simulation project (in your own words).

(c) What programming language was used? Did they justify their choice?

(d) A paragraph describing what real-world data was needed for the model and how it was collected.

(e) A paragraph describing what experiments were run with the model. What factors were varied? What system
performance measurements were taken? What analysis was done with these measurements?

(f) Give a one-page critique of the article and project. What would you have done differently?

2.7.2 Short Answers

(a) Give the most important advantage as well as the greatest disadvantage to having a simulation model with very
few events as opposed to an equivalent model with many events.

(b) What two features generally distinguish a discrete event simulation program from other types of programs?

(c) What are the two broad classifications of entities in a discrete event system?

(d) Give one advantage and one disadvantage to modeling the flow of transient entities in a system.

(e) Does a model with few entities each having many attributes have more or less detail than a model with many
entities each having fewer attributes? Which will generally take more memory to run? Why?

2.7.3 Identifying Discrete Event Systems

For a real system of your choice, describe the system in less than a page and give a one-sentence objective for studying
this system with a simulation model. Identify the dynamic attributes of entities in the system and the events where these
attributes change values. Give a rough event graph for the system. (Pick something interesting to you (but simple).

2.7.4 Simultaneous Events

In the carwash model, if Q=5 and there is a time tie between an ENTER event and a LEAVE event, which event should be
executed next? Why?

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

19

2.7.5 Events List

In the event graph of Figure 2.6, what is the maximum number of events that might be scheduled on the events list at one
time?

2.7.6 Edge Interpretation

For Figure 2.5, which of the following statements are true?

Whenever event A occurs: if t time units later, condition (i) is true, then event B will be scheduled to occur
immediately.

Whenever event A occurs: if condition (i) is true, then event B will be scheduled to occur t time units later.

Whenever event A occurs and condition (i) is false, event B will be scheduled to occur t time units after condition
(i) becomes true.

2.7.7 Future Events List

Assume for the example in Table 2.4 that the times between the next three part arrivals are 2, 1.5, and 3.2 (each ARRIVAL
event schedules the next ARRIVAL event in this model). Furthermore, assume that the processing time for each machine is
0.5 minutes and that there are currently 6 parts waiting in the queue for processing. Finally, assume that once machine 2 is
repaired it will be 10 minutes before it breaks again. What does the future events list look like at time 8.00? What is the
status of each machine? How many parts are waiting in the parts queue?

2.7.8 Simultaneous Event Errors

Assume that for the model corresponding to the future events list in Table 2.4 that the FINISH event made a machine idle
and scheduled a START event if there were parts waiting in the queue. Also assume that an ARRIVAL event will schedule a
START event if it finds an idle machine. What would happen if a part arrived at time 4.40, just as machine 0 finishes
processing? What would happen if the FINISH event occurred before the ARRIVAL events?

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

20

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

21

3

A Tutorial on the Basics of SIGMA

An overview of the SIGMA software environment is presented in this chapter in tutorial format. All primary elements of
event relationship graph modeling are explained. Technical details are presented in later sections.

3.1 Starting a SIGMA Session

Double click on SIGMA.EXE to begin a SIGMA modeling session. SIGMA does not automatically load a model, but
they can easily be recalled using the File/Recall menu command.

3.2 The SIGMA Modeling Environment

A simulation graph window similar to the one in Figure 3.1 will appear when a SIGMA session begins. This is the
primary window for a SIGMA modeling session. Linked to this modeling session are simulation plot windows and output
windows. Note: Several SIGMA modeling sessions may run simultaneously; thus, several simulation graph windows
representing different models may be open at one time.

Figure 3.1: SIGMA's Simulation Graph Window

There are three regions in the simulation graph window: the model creation area (the region in the center of the window),
the menu bar (located along the top of the window), and the toolbar (located along the right side of the window).

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

22

 The various push buttons in the toolbar are identified in Figure 3.2. The Start Run and End Run tools allow
you to start or stop a simulation run; the Select or Edit, Create Process, and Create Single Edge tools let you
quickly create a model; the Single Step tool allows you to watch the simulation as each event is executed; and the Run
Time Information and Show SIGMA Version tools provide you with additional information. In addition, fifteen
User Tool buttons allow you to add previously created models to a new modeling session.

Figure 3.2: SIGMA Toolbar

Select or Edit

Start Run

Create Process

End Run

Create Single Edge

Single Step

Show SIGMA
Version

User Tool

 A window is activated when the mouse pointer is clicked anywhere on it. As the various windows are activated,
the menu bar changes. The menu bar for the simulation graph window contains the following menus: File, Edit, Run,
Variables, Zoom, Window, and Help. The simulation plot window contains the File, Edit, Options, Window, and
Help menus; the output window contains the File, Edit, Search, Window, and Help menus.
 When a SIGMA session is started, the mouse pointer is normally in Create Process mode (⊕). It is in this
mode that the graphical components of a simulation model are created. If you click the right mouse button, the mouse
pointer will change to Select or Edit mode (). This mode is used to add or change information related to specific
vertices or edges. Just double-click on a vertex or edge, and an Edit Edge or Edit Vertex dialog box will appear. Add
information or make changes by clicking on the appropriate box and entering the data from the keyboard. Clicking the
right mouse button will cause the mouse to alternate between the Create Process mode and Select or Edit mode.
Pressing the appropriate push buttons on the tool bar will also activate the Create Process mode or the Select or
Edit mode.

3.3 Exploring Our Carwash Model

We will use a previously created model, CARWASH.MOD, to examine the components of a SIGMA model. To begin, start a SIGMA
session. Open CARWASH.MOD by pressing the File\Open command, pressing Event Graph, and then double-clicking
on CARWASH.MOD from the list of previously created models in the dialog box.. This model is represented in Figure 3.3.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

23

Figure 3.3: An Event Graph for a Single Server Queue, CARWASH.MOD

Recall that CARWASH.MOD has only two state variables: QUEUE, the number of cars waiting in line, and SERVER, the status
of the machine, 0=BUSY and 1=IDLE.. Four events are represented by the four vertices in the carwash model. The RUN
vertex starts the simulation, the ENTER vertex models customers entering the carwash, the START vertex occurs when a car
starts service in the washing bay, and the LEAVE vertex occurs when a car finishes service and leaves the washing bay. The
time intervals between successive customer arrivals to the carwash are independent and random.

WARNING: You should not use a floppy drive or a write-protected network drive as your default drive.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

24

3.3.1 State Variables

Click the mouse on the Create/Edit Variables command under the Variables menu to see the list of state variables
for this model in the State Variable Editor dialog box. Any state variables you define can be used anywhere in your
SIGMA model. We refer to them as state variables to emphasize that they are accessible to all parts of the model. Clicking
on one of the state variables in this dialog box will cause the details associated with that state variable to be displayed in
the input boxes above (as in Figure 3.4.)

Figure 3.4: The State Variable Editor Dialog Box

 The dialog box for state variables, like other SIGMA dialog boxes, has a line for a brief description of the object.
These descriptions are important; they appear as comments in your SIGMA-generated simulation source code and make
your model much easier to understand. Click on the Cancel command button to close the state variable dialog box and
return to the simulation graph seen in Figure 3.3.
 We will further explore this model by clicking the mouse on elements in the event graph. Make sure that the
mouse pointer is in Select or Edit mode. Read the description in each dialog box as we examine the vertices and edges
in the event graph..

3.3.2 Vertices

Double-click on the RUN vertex. This vertex, whose dialog box is shown in Figure 3.5, was the first vertex created in this
model. SIGMA calls the first vertex created vertex number 1; it will always be executed first when the model is run. (This
first vertex is colored green on the screen.)
 The RUN vertex has a parameter: the state variable, QUEUE. When CARWASH.MOD is run, you will be asked to
provide an initial value for the number of customers in the QUEUE when the system opens for service. All SIGMA state
variables are initialized to be equal to zero. The only state change associated with the RUN vertex is to make the SERVER
available (SERVER=1). To exit, click your mouse on the Cancel command button.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

25

Figure 3.5: The Dialog Box for the RUN Vertex

 The ENTER vertex is where customers join the line. Open the dialog box for the ENTER vertex. This vertex
simply increments the number of customers waiting in line (QUEUE=QUEUE+l). Note that QUEUE has been entered as a
display variable, so its value will be shown while the simulation is running. Close this dialog box and then double-click on
the START vertex.
 The START service vertex is where the server is made busy (SERVER=O) and the number of customers waiting
in line is decremented (QUEUE=QUEUE-1). Close the START vertex dialog box and open the LEAVE dialog box.
 The LEAVE vertex makes the server available to serve other customer (SERVER=1). Note that if the variable,
QUEUE, were defined as the number of customers in the total system (in service as well as in line), QUEUE would be
decremented in the LEAVE vertex rather than in the START vertex. Close this dialog box.
 The event vertices are relatively straightforward in discrete event models. The complexity of the models comes
at the edges of the event graph, where the dynamic and logical relationships between events are specified.

3.3.3 Edges

Next, we will examine each of the edges in our model. Figure 3.6 is the edge dialog box that you should see if you
double-clicked on the edge between the RUN vertex and the ENTER vertex.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

26

Figure 3.6: Edge Dialog Box from RUN Vertex to ENTER Vertex
Schedules the First Customer Arrival

 We see that this edge has the condition (1==1). As in the C programming language, == is a test for equality in
SIGMA. Thus, this edge unconditionally (1==1) schedules the first customer to ENTER the system. There is no time
delay between starting the RUN and the first customer ENTERing the system. Here no attribute values are passed, and the
execution priority, used to break time ties between events scheduled to occur at the same clock time, is set to a neutral
value of 5. (Attributes and priorities are important aspects of SIGMA; they allow simple models to represent complex
systems. Both are discussed in greater detail in Chapter 6.) Click the Cancel button on this edge dialog box.

Unconditional edges test the condition (1==1), which is always true.

 Double-click on the self-scheduling edge from the ENTER vertex to the ENTER vertex, which perpetuates
customer arrivals. The most notable item in this dialog box is the delay time. Here, the Delay between successive
customers ENTERing the system will be a time uniformly distributed between 3 and 8 minutes. This is done by making the
delay time for this edge equal to the expression, 3+5*RND. RND is a SIGMA function providing a fraction that behaves like
a random number between 0 and 1. Thus, 5*RND will be a number somewhere between 0 and 5; adding 3 will shift the
range of this number to between 3 and 8. Close this dialog box.
 Open the dialog box between the ENTER vertex and the START vertex. The item of interest on this edge is
Condition: SERVER>0. This means that a customer ENTERing the system will START service without delay only if that
customer finds that the server is available, i.e., if the condition SERVER>0 is true. Close this dialog box.
 Double-click on the edge between the START vertex and the LEAVE vertex. Note that this edge is a double edge:
with one edge from the START vertex to the LEAVE vertex and another edge in the reverse direction, from LEAVE to START.
The dialog box for this multiple edge is shown in Figure 3.7.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

27

Figure 3.7: Multiple Edge Dialog Box between START and LEAVE Vertices

Double-clicking on one of the sub-edges in the multiple edge dialog box will produce the dialog box for that particular
edge. For example, if you double-click on the line for the edge from START to LEAVE, a dialog box for that edge will
appear.
 The edge between the START vertex and the LEAVE vertex has a delay time of five minutes, indicating that it will
take five minutes to wash a single car. Now cancel the dialog box for this sub-edge and look at the dialog box for the sub-
edge from the LEAVE vertex to the START vertex.
 The dialog box for the edge from LEAVE to START tells us that if there are customers waiting in line (QUEUE>O)
whenever a customer LEAVEs the system, the server will START service on the next customer in line. To return to the event
graph for CARWASH.MOD click the Cancel button on the dialog box and clicking the Close command button on the
multiple edge dialog box.

3.3.4 Editing the Carwash Model

To get a feel for editing graphical objects, double-click on the edges or vertices in the graph. Then click on some of the
items in the dialog boxes and use the keyboard to enter changes to the model. (Pressing the OK button will cause your
changes to be temporarily recorded in the model.)
 After you have edited a few dialog boxes, click on the File menu and click again on the Open/Event Graph
command. Click No when asked if changes to CARWASH.MOD should be saved. (Clicking Yes will save the changes you
just made to the model.) Next, scroll through the list of model file names until you see CARWASH.MOD. Double-click on
CARWASH.MOD to reread the initial version of this model into SIGMA. The screen in Figure 3.3 should appear again.
 If you saved your changes to the model, CARWASH.MOD, a backup copy is also saved in your directory as
CARWASH.BAK. Read CARWASH.BAK into SIGMA and save it as CARWASH.MOD, if necessary.

3.4. Using Text Files

Now that we have gone over the model, CARWASH.MOD, in detail, you might be interested in looking at how it is stored on
your computer. The model is stored in a text file by the same name, CARWASH.MOD. To look at this file, first open the File
menu and click the Text Data/Output command. A dialog box will appear. Click on the down arrow in the drop-down
list under List Files of Type and then click on the Other Files option to have all the files included in the list box of
file names.
 Use the scroll bar to locate CARWASH.MOD in the list box; click once on CARWASH.MOD to insert this file into the
File Name input box. Next, click the OK command button. When the text file appears, you will notice that SIGMA
models are saved simply as copies of the dialog boxes for each of the objects in the simulation. Close the file.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

28

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

29

4

Running A SIGMA Simulation

The Run Option dialog box controls how a simulation of a SIGMA model will run. The details associated with running
a model are presented—in particular, the speed of the simulation, how the simulation terminates, and how the numerical
data will be plotted.

4.1 Running the Model

Before you create your own simulations, you should know how to run SIGMA models. Here, we will continue to use the
carwash model to show the basic components of a simulation run.
 Start a SIGMA session and open CARWASH.MOD. Next, click once on the Run/Options command. A Run
Options dialog box will appear like that in Figure 4.1.

Figure 4.1: Run Options Dialog Box for CARWASH.MOD

This dialog box control how CARWASH.MOD executes. The Description of the model is: AN AUTOMATIC CARWASH. The
Output File is the name of the file on your default disk drive where the numerical output from the simulation will be
written; here it is UNTITLED.OUT. The Random Seed is set at 12345, and the Run Mode chosen for this model is
Graphics mode, meaning that we will see a logical animation of the model during execution. The Variables to be
traced are QUEUE and SERVER.
 The Initial Attribute for the model is 5. Recall from Chapter 3 that the first vertex created in CARWASH.MOD was
the RUN vertex, which has the single input parameter, QUEUE. In order to run this model, we will need to specify an initial
value for QUEUE as prompted in this dialog box. Here the initial value for the variable QUEUE is given as 5, meaning that
there will be five customers in line when the carwash opens.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

30

 In this model, the ending condition chosen is Stop On Time. The run will stop after the clock has advanced to
a time equal to or greater than 100. This dialog box also controls output plots. Here the Output Plot check box is
selected, so a simulation plot will appear when the model executes.
 Click the OK & Run button at the bottom of this dialog box. (Respond OK if a dialog box appears with the
question "Replace existing UNTITLED.OUT?" Also, press No if asked to save changes to the model.)
 Watch the graph as the model runs. A simulation plot window with graphical data should appear beside the
simulation graph window. (Recall that you can slow down the execution speed by pressing [F2] and speed it up by
pressing [F3].) When the run is finished, you can look at the numerical output by clicking the Yes button when asked to
"View output trace now?" Enlarge the output window by pressing the Maximize button; scroll through the file to view
the entire contents.
 A portion of the numerical output for this run is given in Figure 4.2; it is a record of the run history. There is an
entry for each occurrence of every event that was monitored from Time 0 to Time 15. (For CARWASH.MOD, the Trace
Event box for every vertex was clicked on in the Edit Vertex dialog box, indicating that all events were to be traced.)
Here we see the simulated time, the name of each event that was traced, the number of times each event took place, and
the values of the Trace Variables, QUEUE and SERVER, at those times. Note that there is a separate column for each
traced variable.

Figure 4.2: Standard SIGMA Output File for the Model, CARWASH.MOD

MODEL DEFAULTS

Model Name: CARWASH.MOD
Model Description: AUTOMATIC CARWASH
Output File: CARWASH.OUT
Output Plot Style: NOAUTO_FIT
Run Mode: GRAPHICS
Trace Vars: QUEUE,SERVER
Random Number Seed: 12345
Initial Values: 5
Ending Condition: STOP ON TIME
Ending Time: 100.000
Trace Events: ALL EVENTS TRACED
Hide Edges:

 Time Event Count QUEUE SERVER

 0.000 RUN 1 5 1
 0.000 ENTER 1 6 1
 0.000 START 1 5 0
 3.483 ENTER 2 6 0
 5.000 LEAVE 1 6 1
 5.000 START 2 5 0
10.000 LEAVE 2 5 1
10.000 START 3 4 0
10.653 ENTER 3 5 0
15.000 LEAVE 3 5 1

 To return to SIGMA, click the Close command under the Output Control menu.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

31

4.2 Run Options

The following sections provide additional information concerning the various options available under the Run Options
dialog box.

4.2.1 Description

The Description text box allows you to provide a brief description of your model. Although not executable, all of the
descriptions in SIGMA are important. The descriptions will appear as in-line comments in your SIGMA-generated
simulation source code and English translation.

4.2.2 Output File

The Output File text box allows you to name the file in which you want the numerical output recorded. The default
output file name is UNTITLED.OUT. The name of the event, the time each event executed, the number of times each event
occurred, and the current values of all state variables that were chosen to be traced are recorded in your output file. (You
choose the events that are to be traced by clicking the Trace Event check box On or Off in the dialog box of each
vertex.) This output file is readable by a spreadsheet.

WARNING: Do not write your output over your model. It is advisable to end output files with .OUT and model files
with .MOD.

 After the simulation run is complete, a dialog box will appear asking if you want to view the output trace now. If
you click the Yes button, the output from the simulation will appear in a third window titled UNTITLED.OUT. Click the
Maximize button to see the full screen. After examining the output, click the Restore button to return to the previous
screens. When you have an opened output file on the screen, you can view the recent history of the output while the model
is running. To do so, activate the simulation graph window, restart the simulation, and then press the "Refresh" button
(in the upper left corner of the output window) while the model is running to update the output file during the run. Long
output files should be read by a spreadsheet.

WARNING: You will not be allowed to save your output on a write-protected or an unrecognized disk drive. If you
are using a network, you must specify your complete path, including the drive letter, so you do not write on the
network drive.

 The output from SIGMA models is in standard ASCII format that is compatible with most statistical analysis
packages. For very large output files, the View Text window in SIGMA will not be able to show the entire output file. If
this is the case, a message will appear on the screen. Most likely, too many vertices have been traced. Turn off some
traced events in the Edit Vertex dialog boxes or use any ASCII editor (e.g., Windows Notepad) to view the entire file. .

4.2.3 Run Modes

The four run modes available in SIGMA can be found in the Run Mode drop-down list. They are Single Step,
Graphics, High Speed, and Time Steps. Note that the run mode can be changed during a run. Simply open the
Run Options dialog box during the simulation, click on the Run Mode drop-down list, click on the new run mode,
and click the OK command button.
 In Single Step mode, the simulation will halt after each vertex is executed and wait until the Single Step
tool is pressed. This run mode permits you to monitor state variable changes and the list of scheduled events. This mode is
particularly useful when verifying the logic of a simulation. When you run a model in Single Step mode, the Single
Step Window will automatically open on the screen. This window will show the current clock time, the event being
executed, the number of times the event has executed, the value for each state variable being traced, and the pending

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

32

events list. Included in the window is the Single Step tool. Click the mouse on the Single Step tool or press [Enter]
to advance the simulation to the next scheduled event and update the Single Step Window.
 Close this window by clicking on the Single Step Control menu and then clicking the Close command or
clicking the Close button.. Please note that if you close the Single Step Window during a run, the simulation will
revert to Graphics mode. If you want to return to Single Step mode during a run, you must click on the Run Time
Information tool to reactivate the Single Step Window.
 In Graphics mode, vertices and edges change color as the simulation progresses. Edges change color when
their conditions are tested as being true, and vertices flash when they are executed. You see the model being executed.
Any event that does not execute during a run will remain shaded. The presence of vertices that never execute may indicate
an error in your model logic. This run mode allows you to get a feel for how the model behaves. Hence, it is a good initial
method for reviewing your model. If you choose to activate the Run Time Information tool during Graphics mode, a
Trace Window that is very similar to the Single Step Window will appear. However, you do not need to do
anything to advance the simulation; it progresses automatically. If the simulation graph window is active, pressing [F2]
will slow the model execution and pressing [F3] will restore it to its original speed.
 High Speed run mode bypasses the graphics in SIGMA and produces an output file. High Speed mode is
useful particularly when running large simulations for long periods. While High Speed mode does produce a simulation
plot as the model runs, it is wiser to turn the Output Plot check box Off so that the plot is suppressed or minimize the
plot window. If execution speed is really important, compiling SIGMA-generated C source code is recommended.
 Time Steps run mode is useful for working with spreadsheets. The graphs, plots, and output files are updated
only when the simulated time advances.

Translate your model to C for dramatically faster run times. Also minimizing the number of
windows open, including plots and graphs, will speed up the runs considerably.

4.2.4 Ending Conditions

Two methods are available within the Run Options dialog box to terminate a run. With Stop On Event, the
simulation will terminate after a particular event occurs a specified number of times. With Stop On Time the simulation
will run until the first event after the specified time.

To control the run duration based on a particular event, click on Event in the Stop On block of the dialog box.
Two boxes will appear: a Stop Event drop-down list with all the events in the simulation and an Iterations input box.
Suppose, for example, that our carwash simulation is to run until the tenth customer departs. Thus, the run would be
controlled by the LEAVE vertex, and the number of executions of this vertex would be 10. You would activate the Stop
Event option, click LEAVE, and then type “10” in the Iterations box.

If you want to run your simulation for a specific time, click the Time option and enter the amount of simulated
time the run is to take.
 To stop in the middle of a run, click the mouse on the End Run tool. This stops the current simulation run;
however, confirmation is requested to prevent accidentally halting the run. Of course, if the future events list becomes
empty during a run, the run will also terminate.

4.2.5 Trace Variables

In the Trace Variables text box, you select the state variables to be recorded and displayed during the run. You list the
state variable names (with subscripts in square brackets if appropriate) in a string separated by commas. It is advised to
list only a few variables in each run.

4.2.6 Initial Attributes

In the Initial Attributes text box, you can specify the initial values for some state variables. These are the values for the
parameters of the first vertex you created in this model. When you run a model, you must give initial values for all the
variables you specified as parameters for the first vertex you created regardless of how you might have named them.
Initial attribute values are entered as a string of numbers separated by commas.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

33

4.2.7 Random Seed

Another starting condition for a simulation is the seed for the pseudo-random number stream; this is any valid integer
between 1 and 65000. Enter a random number seed in the Random Seed text box or use the default random seed –
12345.

4..2.8 Output Plot

Graphical plots of the data from a simulation are available to you while the simulation is running if the Output Plot
check box is clicked On. (See examples of plots in Chapter 10.) A dialog box will appear when the Initial Plot
Defaults button is clicked prior to the creation of a plot window. This box, shown in Figure 4.3, allows you to set up the
plots as you wish.

Figure 4.3: Initial Plot Defaults Dialog Box

 There are seven plot types available in the Plot Types drop-down list. They include step plots and line plots
(which show how variables change over time), scatter plots (which show the relationship between pairs of variables),
array plots (which show all elements of an array), histograms (which count the values of variables), autocorrelation plots
(which show second-order dependence in the output), and standardized time series (which can be used to detect trends and
initialization bias). Plot Creation options include: creating a new plot for each run or having a new plot overwrite the
previous plot. Placement Options are also available.
 Note that double-clicking anywhere in the simulation plot window during a run will open the Output Plots
dialog box, shown in Figure 4.4. In it, you can change the plot type and its characteristics. Click the down arrow at the
right of the Plot Type drop-down list to see the various plot types available to you. If you click on a different plot type
and then click the OK button at the bottom of the dialog box, you will see a new graphical representation of the output.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

34

Figure 4.4: Output Plots Dialog Box

The Step Plot, Line Plot, and Scatter Plot have identical Output Plot dialog boxes. For these plots, you can select
the X Axis (horizontal) and Y Axis (vertical) and their limits. The Array Plot, Histogram, Autocorrelation, and
Standardized Time Series have slightly different dialog boxes.

Labels and Axes: You can select a font type for the title and axes labels for all plots by clicking the Select Font
command under the Plot/Edit menu. The Title Font Size Multiplier box (on the Output Plots dialog box) can be
used to make the title of the plot larger or smaller than the axes labels.

Data Truncation and Scaling: The Min (lower) limit and Max (upper) limit for the X Axis can be used to eliminate
data from each end of a run that might be contaminated by run initialization or termination bias. Note that truncating
biased data in this way is only effective after a run has been completed since these limits will be rescaled during a run (if
the automatic rescale switch is turned on as it should be). Although it is much less common, you might also want to set
maximum and minimum limits for the Y Axis to focus on a particular range of values or to plot several different output
series on the same scale for comparison purposes.

Batching: In the X Axis group, you are also given the option of setting a batch size for the output data. Batching
simulation output data is a common smoothing technique where adjacent and exclusive groups of observations are
averaged. The resulting series of "batched means" can then be plotted and analyzed. A detailed example of using batched
means to estimate confidence intervals is given in Chapter 10.

Histograms: The histogram plot gives the relative counts of observations in different intervals (called cells or "slices").
The Histogram Plot dialog box has as its Y Axis the count of the number of observations in each slice. You can
change the number of slices to obtain smoother or more detailed histograms.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

35

Autocorrelation Plots: The autocorrelation plot gives the correlations between observations in the output series as a
function of how close they are to each other. The X Axis for this plot is the "lag" between the observations (a lag of 1 is
for neighboring observations and a lag of 2 is for observations that have one observation between them, etc.). Setting a
fairly small maximum value for the lag is a good idea for two reasons: computing the values for this plot will be faster
with a small maximum lag, and because correlation estimates for observations that are far apart are not very accurate.

Trend Detection: The Standardized Time Series (STS) plot is a powerful tool for both confidence interval estimation
and detecting trends in the output data. Standardized time series are sensitive to changes in the level of a sequence of
observations. This is particularly useful in detecting initialization bias in a simulation output series. If the STS plot seems
to be rather jagged and spends about the same time above and below zero, then there is probably not much of a trend in
the output. If the STS plot is smooth and pulled off in either a positive or negative direction, an increasing or decreasing
trend is indicated. A positive trend pulls the STS series to the positive side of zero, and a negative trend pulls the STS plot
to the negative side of zero. For practical purposes, you can simply look to see if the STS plot tends to be positive
(negative) during a run, indicating an increasing (decreasing) trend in the data.
 Examples of using STS plots to detect very weak trends in the output data are presented in Chapter 10. A
detailed discussion of using STS information to estimate confidence intervals also is deferred to Chapter 10.

4.2.9 Command Buttons

The command buttons in the Run Options dialog box are OK & Run, OK, and Cancel. The first saves changes and
runs the model, the second saves changes and returns to the static simulation graph, and the third simply closes the dialog
box without saving the changes.

4.3 Exercises

The models referred to in these exercises are SIGMA models.

4.3.1 A Semi-Random Walk

Build a simulation of a semi-random walk. The location of the walker on the line is given by the variable, X. Every step is
in an opposite direction and has an expected step length equal to 4 feet. However, the steps to the right are uniformly
distributed between 3 and 5 while steps to the left are exactly 4 feet long. Would you expect the location of the walker to
change much over time?

4.3.2 Stopping a Run Based on Event Counts

Run CARWASH.MOD until 10 customers LEAVE the system.

4.3.3 Time Scaling

Without changing the run stopping criterion in the Run Options dialog box, double the effective run duration of
CARWASH.MOD. (Hint: Rescale the unit for measuring time from minutes to half-minutes.)

4.3.4 Event List Dynamics

Twenty jobs were run through a computer system with one CPU. They all had one of three priorities (lowest number has
higher priority and is executed first). A historical data file of these jobs is as follows:

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

36

Job
number

Time job was
submitted

Job priority CPU time used
by the job

1 .00 1 .02
2 .00 2 .01
3 .01 3 .02
4 .02 2 .04
5 .04 3 .02
6 .05 2 .01
7 .07 1 .01
8 .12 1 .01
9 .14 2 .02
10 .15 1 .01
11 .15 2 .01
12 .17 1 .02
13 .18 3 .04
14 .21 1 .03
15 .22 2 .05
16 .23 1 .02
17 .23 1 .01
18 .26 1 .03
19 .33 2 .02
20 .34 1 .03

(a) By hand, schedule the job submission and job completion events as they would occur if all jobs had the

same priority; assume that nothing else changes except the priorities. Schedule only the next job submission
and next job completion event, not all future job submissions (that is, at most two events will be scheduled at
any given time). At time 0.25 what is the state of the system, i.e., the number of jobs in the queue, the status
of the CPU (busy/idle), and the events that are scheduled to occur in the future (and when they are
scheduled)?

(b) Do part (a) with the execution priorities enforced.

(c) Assume that a second identical CPU has been installed and that the two processors operate in parallel on the
same single queue of jobs. A single CPU will finish a complete job before taking the next job in the queue.
With job priorities enforced, plot the queue size and number of idle CPU's every .01 time units.

4.3.5 A Theater with Limited Seating Capacity

Suppose that customers arrive at a movie theater at a uniform rate of one every 10 to 25 seconds and each is served in
constant time of 20 seconds. There is limited seating in the theater, so the ticket window closes after it has sold 100
tickets. Model this queue.

4.3.6 A Restaurant

A popular restaurant, which does not accept reservations, serves parties in the order that they arrive. For dinner, parties
arrive with a rate uniformly distributed between 5 and 15 minutes. Parties range in size from 2 to 6 people, each with the
same probability of arrival. Service time for each party, regardless of size, is 2 hours. Assume the restaurant has a capacity
for 12 parties. Model this system.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

37

5

Event Graph Modeling

This Chapter presents numerous ways to enrich and modify the basic queueing model introduced in Chapter 2. The basic
single server queue model, CARWASH.MOD, can serve as a template for very sophisticated models. With a few
modifications and enrichments, the carwash model can be made to simulate many systems, including those with multiple
servers with identical capabilities, multiple servers working in parallel with different capabilities, batching operations,
assembly operations, service failures, and closing times. Furthermore, SIGMA is not limited to modeling discrete event
simulations. Indeed, any computer simulation can be modeling using SIGMA Here demonstration models have been
included that represent continuous time modeling of an aquatic ecosystem, financial risk analysis in coupon bond pricing
for an investment bank, and critical path evaluation of a construction project.

Several important features of event graphs are expanded upon including edge attributes, event parameters, and
event canceling as well as methods for modeling multiple resources and transient entities. This chapter includes a
discussion of the modeling technique of using Boolean variables, which allow alternatives to be expressed more easily, as
in "if-then-else" statements, "do-while" loops, and nested loops.

5.1 Enrichments to Our Basic Model

You will find that the following discussions are much easier to understand if you read while looking at the models on your
computer. The name of the model(s) corresponding to each section is given in the title of that section. You only need to
consider one vertex at a time and its exiting edges. One of the major advantages of event graphs is that you do not have to
look at the whole graph to understand what is happening Look at one vertex at a time along with its exiting edges—the
graph takes care of connecting the model correctly.

5.1.1 Multiple Identical Parallel Servers: BANK1.MOD

We will enrich our original model of a single server queue with one server in order to represent several identical servers
operating in parallel on a single waiting line of customers (e.g., tellers at a bank). We continue to use the same 1 =
available and 0 = unavailable convention that we used with the single server; this allows us to easily change the number of
servers available in our model. We simply let SERVERS denote the number of idle tellers in a simulated bank. No matter
how many tellers we have in our model, the condition, SERVERS>0, will always mean that at least one server is available.

The only modification necessary of our basic model to change it from a single server system to a multiple server
system is to set SERVERS equal to the total number of tellers in the system in the RUN vertex. We do this by first
entering SERVERS as a parameter in the RUN vertex dialog box and then entering the number of total servers (3) in the
Initial Values box in the Run Options dialog box. We initialize the number of servers as an input parameter so we can
change the number of servers easily each time we run the model. All edge conditions remain the same; however, service
times are now random.
 The SIGMA graph for this system appears in Figure 5.1. The state variables used to describe this system are:

QUEUE The number of customers currently waiting in line, initially equal to 0 by default.

SERVERS The number of idle tellers, specified as an input parameter to the initial RUN vertex.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

38

Figure 5.1: Multiple Server Queue

RUN ENTER LEAVESTART
(S)

ta

{Q=Q+1}

(S>0)

{S=S-1,Q=Q-1} {S=S+1}

(Q>0)

ts~

~

 As before, we will "read" this model by sequentially examining the state changes and exiting edges. First, let us
look at the vertices.

In the RUN vertex, the number of SERVERS is read from the Run Options dialog box and the run started.

In the ENTER vertex, the arrival of the next customer is modeled with the state change, QUEUE=QUEUE+1.

In the START service vertex, the queue and the number of free servers are both decremented with state changes,
QUEUE=QUEUE-1 and SERVERS=SERVERS-1.

When the service is finished, the customer can LEAVE. In the LEAVE vertex, the number of idle servers is incremented
with the state change, SERVERS=SERVERS+1.

Next, we read the edges that exit from each vertex with one sentence per edge.

When the RUN is started, the first customer is unconditionally scheduled to ENTER right away.
Subsequent customers ENTER at intervals that are uniformly distributed between 3 and 8 minutes.

When a customer ENTERs, if there is an idle server (SERVERS>0), service will START without delay.

Once service STARTs, the customer will be scheduled to LEAVE after a time delay equal to the service time of between
2 and 6 minutes.

When a customer LEAVEs the bank, if there are still customers waiting (QUEUE>0), the server will immediately
START service on the next customer.

 Notice that the vertices for this example are identical to those in the carwash model. The only difference is that
rather than setting the SERVER to busy or idle (0/1) when service starts and finishes, we increment and decrement the total
number of idle servers. In fact, the single server carwash model is a special case of this model if the variable SERVERS is
initialized to equal one in the RUN vertex.
 We may wish to study the behavior of this system under different service speeds and demand rates. For the time
being, we are only interested in resident entities - i.e., the servers and queues. We will observe both the utilization of the
servers and the size of the queue. There is no reason here to model individual customers, as they are assumed to be
identical; however, modeling customers is important in later examples. Modeling only resident entities simplifies a model
considerably, as we shall see when we enrich this model to explicitly include each customer. With a little practice, either
type of model is very easy to build.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

39

5.1.2 Batched Service: BATCHSIZ.MOD

Batched service occurs when more than one item is processed at the same time. Examples include a furnace that processes
multiple parts, an oven in a bakery, or a shuttle bus that transports airline passengers.
 For this enrichment of the carwash model, we will denote batch size with the variable B. As a full batch is
required for processing, we simply change the edge condition for the edge between ENTER and START to S>0&Q>=B. (Note
that & is the symbol for a Boolean "and" operator that indicates that both conditions must be true.) Thus, if there is a
server available and the queue is equal to or greater than the desired batch size, start service. We also would change the
edge condition between LEAVE and START to Q>=B. The state change vector for the START event is now

S = 0, Q = Q-B

so that a full batch is removed from the waiting queue every time a START event takes place. This enrichment is shown in
Figure 5.2.

Figure 5.2: Event Graph for a Queue with Batched Service

RUN ENTER LEAVESTART

{S=1}

(Q, B)

ta

{Q=Q+1}

(S>0&
Q>=B)

{S=0,Q=Q-B} {S=1}

(Q>=B)

ts~

~

 If we were simulating a system where it is possible to process a partial batch, the edge conditions for our original
carwash model would not change. The state change for the START vertex would decrement Q by the minimum of the Q
and B,Q=Q-MIN{Q;B}.

5.1.3 Rework: REWORK1.MOD

In some cases, it may be necessary to rework a part that has just been processed. This situation is most common when
layers of material are applied to a part, as in a painting operation. The only change needed in the carwash model to create
this new model is to add a feedback loop in the form of an edge going from LEAVE to a new vertex called REWORK and
another edge from REWORK back to START as shown in Figure 5.3. In addition, the probability of rework P is an input
variable to the model. A random number, RND, that falls (strictly) between 0 and 1 is drawn; if this number is less than P,
rework is required. The probability that the condition RND<P is true equals P.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

40

Figure 5.3: Event Graph with Rework

RUN ENTER LEAVESTART

{S=1}

(Q, P)

ta

{Q=Q+1}

(S>0)

{S=0,Q=Q-1} {S=1}

(Q>0)

ts
tr

REWORK

{Q=Q+1}(S>0)
(RND<P)~~

~

~

 Notice that if we model REWORK in this manner, LEAVE, REWORK, and ENTER might all schedule a START vertex at
the same time. However, SIGMA automatically breaks time ties correctly, and the execution priority for the START vertex
(assigned by the edges scheduling this event) will be higher than the execution priority for all other vertices. If not, an
ENTER or REWORK vertex might schedule a START event (if the server already was made free by the LEAVE event) at the
same time that the LEAVE event scheduled a START event. These START events would each, in turn, schedule LEAVE
events, creating "phantom" extra servers in our model. If the START event is executed before any other events, there is no
problem since this makes the appropriate edge conditions (S>0) false.
 This model illustrates problems that may occur when two events are scheduled at the same time. Several popular
professional simulation languages have no mechanism for breaking ties in the times that simultaneous events are
scheduled. This is a bigger problem than one might think at first glance, since in a "balanced" system, time ties are
intentionally designed into the system. The so-called Just In Time production systems invented in Japan are examples.

WARNING: Watch out for unwanted side effects that come when events are scheduled simultaneously!

 Sometimes rework requires an additional preparation time, called rework setup time. To model this additional
rework preparation time (e.g., to remove paint), we simply place a delay on the edge from LEAVE to REWORK equal to the
rework setup time, here tr.

5.1.4 Limited Waiting Space: BUFFERQ.MOD

In our next model, we will simulate a system with limited waiting space in the queue. The amount of waiting space is
called the buffer size.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

41

Figure 5.4: Event Graph with Limited Waiting Space

RUN

{S=1}

(Q, B) ARRIVE

ta

(Q<B)

{S=0,Q=Q-1} {S=1}

LEAVESTART

(Q>0)

ts
ENTER

{Q=Q+1}

(S>0)

~ ~

~

We define variable B as the buffer size and specify this as a parameter for the RUN vertex, to be initialized when the model
is run. To create this model, we modified our basic carwash model by adding an ARRIVE vertex between the RUN vertex
and the ENTER vertex. The self-scheduling edge used to create customer arrivals is moved from the ENTER vertex to the
ARRIVE vertex. We also conditioned the edge from ARRIVE to ENTER to require that there be an empty space for the
arriving customer to wait. See Figure 5.4.
 It is also possible to model this system another way, using a Boolean variable. When using Boolean variables, a
condition takes on the value of 1 if it is true and 0 if it is false. Again using the carwash model, we can incorporate limited
waiting space by altering the expression for the state change in the ENTER edge from Q=Q+1, which models an arriving
customer unconditionally joining the queue, to the expression

Q=Q+(Q<B)

 If the condition (Q<B) is true, there is waiting space for an arriving customer and the Boolean variable in
parentheses will be equal to 1. Then Q will be increased by 1. If the Q equals or exceeds the buffer size, there is no
waiting space. Consequently, the condition will evaluate to 0, and Q will not be incremented (0 is added to Q). See Figure
5.5 for the event graph for this model.

Figure 5.5: Using Boolean Variables to Model Limited Waiting Space

RUN

{S=1}

(Q, B)

ta

{S=0,Q=Q-1} {S=1}

LEAVESTART

(Q>0)

tsENTER

{Q=Q+(Q<B)}

(S>0)

~

~

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

42

5.1.5 Assembly Operations: ASSEMKIT.MOD

In an assembly operation, several different types of parts are put together into a single unit. The collected parts for a
finished assembly are sometimes called a "kit." A kitting and assembly operation, where one part from Operation 1 is
joined with P parts from Operation 2 to form a kit for assembly Operation 3. is modeled in Figure 5.6.

Figure 5.6 Event Graph for an Assembly Operation

RUN KIT PACKOPRN3

{S=1}

(P)

(S>0)

{S=0,Q[3]=Q[3]-1} {S=1}

(Q[3]>0)

ts

OPRN1

t1

t2

OPRN2

(Q[2]>=P
 & Q[1]>0)

{Q[1]=Q[1]+1}

{Q[2]=Q[2]+1}

(Q[2]>=P)

{Q[1]=Q[1]-1,
Q[2]=Q[2]-P,
Q[3]=Q[3]+1

~

~

~

~

5.1.6 Different Servers Working in Parallel: SLOFAST0.MOD SLOFAST1.MOD

Some systems have two servers with different characteristics operating in parallel (e.g., machines with different average
processing speeds, the high-speed check out line at the supermarket). In this example, there is a new, faster machine
working with last year's slower model.
 We will designate each type of machine with an index, A, that indicates the age of the machine. For the new
machine, A=0, and for the older machine, A=1. The status of each machine is given by the values of state variables S[0]
and S[1]. The status of a machine will be equal to 0 if the machine is busy and equal to 1 if the machine is idle. We will
denote the average processing times for the two machines by ts[0] and ts[1]. We assume that when both machines are
idle, the faster machine, (A=0), is preferred.
 The most direct way to model these two types of machines operating in parallel is to add a CHECK vertex and a
second pair of START and LEAVE vertices for the second server. This was done in Figure 5.7 and in the model
SLOFAST0.MOD. From the viewpoints of the servers, this model with a single waiting queue and two servers is the same as
a model with separate waiting lines for each server with line "jockeying" (customers in a queue will change lines if they
see that the other server is idle).
 Parts arrive at the ARRIVE vertex in the usual manner with a (perhaps random) interarrival time of ta. We will
increment the count, Q, of the number of parts in the queue at the ARRIVE event. At the CHECK vertex, we check to see if
there is an idle machine. If the faster machine is available, work will start with that machine. In the START0 vertex, the
state change S[0]=S[0]-1 makes machine 0 busy; S[0] goes from a value of 1 to a value of 0.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

43

Figure 5.7: Two Dissimilar Servers Working in Parallel

RUN

{S[0]=S[0]-1,Q=Q-1} {S[0]=S[0]+1}

LEAVE0START0

(Q>0)

ts[0]
CHECK

(S[0]>0)
ARRIVE

ta

{Q=Q+1}

{S[1]=S[1]-1,Q=Q-1} {S[1]=S[1]+1}

LEAVE1START1

(Q>0)

ts[1]

(S[0]<=0 &
S[1]>0)

{S[0]=1, S[1]=1}

~
~

~
~

 If the fast machine is busy and the slower machine is idle, work will start with machine 1 at the START1 vertex.
The test for this is the condition S[0]<=0&S[1]>0 on the edge from CHECK to START1. When the conditions on both
edges exiting the CHECK event are false, both servers are busy and nothing further will happen until the next event occurs
(which will be an ARRIVE, LEAVE0, or LEAVE1 event).
 Just as we enriched our model of the single server queue to include multiple identical servers working in parallel,
we can easily enrich this model to include many servers of two types. We simply redefine S[A] to be the number of idle
servers of type A and initialize our model (at the RUN vertex) with the total numbers of each type of server. This model is
implemented as SLOFAST1.MOD .

5.1.7 Periodic Resource Unavailability: FAILURE.MOD

In Section 5.2.2, modeling of service failures will be used to illustrate event cancellation. Here we present another way to
model service failures without using canceling edges that is more general, runs faster, and is easier to implement. Most
simulators have the ability to model resources becoming unavailable, such as a machine going off-line or a worker going
on a break. However, these simulators tend to have one or more of four major shortcomings
 First of all, the time until failure is often simply measured as clock time, not the time the resource is working.
This allows resources to fail even when they are not busy. This is usually nonsense—if a machine is idle, how can you tell
that it has failed?. Secondly, the Time Between Failures (TBF) rather then Time To Failure (TTF) is sometimes modeled.
This allows resources that are already broken to break yet again (again this is nonsense). Thirdly, there are only limited
options on what is done with the job currently being processed when the resource goes off line. Several things can be done
with jobs being processed when a resource goes off line (called the 4-Rs).

Reject: the job in process is discarded.
Resume: work on the job in process is continued.
Restart: processing is started over.
Rework: additional work needs to be done before the job can be restarted.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

44

An addition, a job can be Rerouted to another resource or Rescheduled to be processed by another resource (a 5th and 6th
R?). Finally, most simulators do not allow for multiple failures while processing the same job.
 The model, FAILURE.MOD, remedies all these shortcomings for multiple parallel resources. That model is
rather complex and general; we will first discuss an event graph module for a single resource that overcomes the first
three shortcomings. This model is an excellent application of Boolean variables in SIGMA.
 In what follows we will enrich our elementary queueing model to permit quite general
resource unavailability. For our model, we will define the following variables.

Q = number of jobs in line
S = status of the resource (1 if available, 0 otherwise)
PT = current processing time for Ith resource.
TTF = time to failure
TTR = time to repair
FAIL = failure flag (1 if failure occurs)

Input data to our model includes the following Random Variables, which will be generated when they are needed.

TA = time between job arrivals
TP = processing time
TF = time to failure
TR = time to repair

Modifying an event graph to model failures, while detailed, is very simple. Whenever a new job is
started, we generate its processing time (PT) and check to see if the resource will fail before the job
can be finished (TTF<PT); if so, we increase the job "processing" time to include the time to repair
the resource and take care of the job currently being processed. If the resource is not due to fail before
the job finishes, we simply decrement the remaining Time To Failure by the processing time for that
job.

Figure 5.8 is the event graph for this model. An initial Time To Failure (TTF) for the resource is
generated when the run is started. The processing time for a job includes any needed repair time for the
resource and the time to dispose of or finish the job currently being processed. All other edges are the same as
for non-failing resources.

Figure 5.8: Resuming Work after a Resource Failure

{S=1,
TTF = TF}

PT

∫
(Q>0)

{S =1}

(S>0)

{Q=Q+1}

TA

EnterRun Start Finish∫

(See text)

As mentioned earlier, there are only two changes to our basic model, the time to failure is set in the Run event
and the processing time is computed in the Start event to include the repair time if a failure occurs while a job is being
processed. The state changes for the Start event are as follows (with comments using generic times).

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

45

{S=0, / Make the server unavailable
Q=Q-1, / Remove job from queue
PT=TP, / Generate job processing time
FAIL=(TTF<=PT), / Is there a failure during processing?
TTF=(FAIL==0)*(TTF-PT) / No failure - decrement Time to Fail
 +(FAIL==1)*(TF -(PT-TTF)) / Failure - set new Time to Fail
PT=(FAIL==0)*PT / No failure: process job
 +(FAIL==1)*(PT+TR), / Failure: resume processing after repair

If the job is discarded when there is a resource failure, simply replace PT with TTF in the sixth line in the above

state change for the Start Event. PT is simply the time from when the resource starts working on a job until that resource
again becomes available to process the next job (perhaps after a failure and repaired).

5.2 Event Cancellation

In some cases, the occurrence of an event will cause some previously scheduled event to be cancelled. For example, if a
machine in a factory simulation happens to break, the completion of the current job will have to be cancelled. In event
graphs, cancelling edges are shown as dashed arrows. Conditions under which the originating vertex will cancel the
destination vertex are shown in the same manner as scheduling edges. If the edge condition for a cancelling edge is true,
cancellation of the destination vertex is assumed to occur immediately; all the delay times for cancelling edges are equal
to zero.

5.2.1 Closing Time: CLOSEIT.MOD

Here we expand the carwash model to include a daily closing time. When the simulated time, CLK, reaches the value of
the input variable, CLOSING_TIME, we will no longer admit customers to the system. Of course, customers already
waiting in line when we close will be served. There are several ways to model this. A straightforward way might be to add
an ARRIVE vertex like we did in BUFFERQ.MOD and place a condition on the edge from ARRIVE to ENTER that the
current time be less than the value of CLOSING_TIME. The problem here is that we will not know in advance how many
customers are waiting in line when we close; therefore, we will not know when we should stop the simulation run. We
could set the run time to a large number so that the customers in the system have ample time to leave the system before
the simulation ends.
 Since customer arrivals are generated by having each ARRIVE event schedule the next ARRIVE event, a more
efficient model for closing the queueing system would be to cut off the stream of customer arrivals at CLOSING_TIME.
However, placing the condition, CLK<CLOSING_TIME, on the self-scheduling edge that generates arrivals would not be
correct. Before closing time, an ARRIVE event might be scheduled to occur after CLOSING_TIME.
 A correct way to stop the arrival of customers at closing time is to cancel the next scheduled ARRIVE event (and
thus all subsequent customer arrivals) at CLOSING_TIME. Any waiting customers will be serviced until there are no more
events on the future events list; by default, the run will stop with an empty events list. (An empty future events list is a
default run termination condition for almost all discrete event simulation systems, including SIGMA.) This model for
closing a system is pictured in Figure 5.9

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

46

Figure 5.9: Queue with a Closing time

RUN

{S=S-1,Q=Q-1} {S=S+1}

LEAVESTART

(Q>0)

ts
ENTER

(S>0)
ARRIVE

ta

{Q=Q+1}

CLOSE

{S=1}
tc

(Q, tc)

~

~

5.2.2 Single Server with Intermittent Service Failures: BRKDN.MOD

The model in this section is intended to illustrate another use of event canceling—to model the failure of a resource. A
more general way of modeling resource failures is presented in Section 5.1.7. Another enrichment of the basic carwash
model allows us to model periodic breakdowns of service by adding two vertices and expanding the definition of the
status of the server to include "broken." (see Figure 5.10) Now server status is represented by 1 (available), 0 (busy), and
-1 (broken). The breakdown process is modeled with the following vertices:

FAIL is the vertex where a service failure occurs. Any job that may be in progress and scheduled to LEAVE the
system is cancelled. The part being worked on when the machine broke down is destroyed. The server's status is
changed to "broken" with the state change, SERVER=-1.

FIX is the vertex where the server is repaired. The state change, SERVER=1, makes the server once again
available.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

47

Figure 5.10: A Queue with Service Failures

RUN ENTER LEAVESTART

{S=1}

(Q)

ta

{Q=Q+1}

(S>0)

{S=0,Q=Q-1} {S=1}

(Q>0)

ts

FIX

FAIL

tf tr

{S= -1}

{S=1}

(Q>0)

~

~

~

Additional edges added to the carwash model to simulate server breakdowns include the following:

An unconditional edge from RUN to FAIL is used to schedule the first service breakdown when the run starts
(tf)

An unconditional edge from FIX to FAIL is used to make the server break down after a randomly distributed
time interval (tf). This is regardless of whether or not the machine actually did any work during this interval.

A cancelling edge from FAIL to LEAVE is used to cancel the LEAVE event without delay if the server is busy.
Note that if the server is idle when a failure occurs, we will attempt to cancel a nonexistent LEAVE event (which
does nothing if the server is not busy).

An edge from FIX to START, conditioned by (QUEUE>O), is used to immediately start the server working after
being repaired if there are parts waiting in the queue.

An unconditional edge from FAIL to FIX, with a delay time of tr, is used to schedule the server to be fixed
after the repair time.

 If we assume that a part in service is not affected by a machine failure, we would add a variable to keep track of
the amount of service time remaining on a part when failure occurs. Also, it might be more realistic to model machine
failures as being dependent on how much work was done since the last failure rather than on the elapsed time. This
situation is modeled in Section 5.1.7 defining a new state variable to accumulate the working time until the next failure.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

48

5.3 Event Parameters and Edge Attributes

An important enrichment of our basic model is the parameterization of event vertices: similar events can be represented
by a single vertex with different parameter values. For example, say there are several machines working in a factory. A
"start processing" event might be parameterized to indicate which machine is involved. We might call this event
START(M). START(3) would indicate that machine number 3 is starting. Similarly, a "finish processing" event might be
parameterized to indicate which machine has just become idle. We might call this event FINISH(M); FINISH(6) would
indicate the end of service on machine 6.

Figure 5.11: Conditional Edge with Delay Time and Parameter Passing

A Bt
(j)

(i)
k

~

 We parameterize event graphs using the notation in Figure 5.11. The edge on a simulation event graph is now
"read" as follows:

if condition (i) is true at the instant when A occurs, then event B(j) will be scheduled to occur t minutes later
with parameter, j, equal to k.

The values for the expression k are computed when event B is scheduled. The state variables j are set to these values
when B is later executed. In general, the attribute, k, can be a string of the values of expressions, separated by commas,
and j can be a vector of state variables; again, separated by commas.
 Consider a network of waiting lines, such as those at an airport terminal. The number of customers in each queue
in the system might be represented by a variable called NUM_IN[QUEUE]. Here [QUEUE] identifies a particular line and
NUM_IN is an array of integers (an integer state variable with a size greater than one). Whenever a new customer joins a
waiting line, the number of customers in that queue is increased by one. The vertex in the graph representing this event
will contain the state change, NUM_IN[QUEUE]=NUM_IN[QUEUE]+1. A copy of the dialog box for this vertex is shown in
Figure 5.12. This vertex will require a value for the parameter, QUEUE, telling which line in the system the customer joins.
A value for the parameter, QUEUE, is passed as an attribute of the edge that scheduled this vertex.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

49

Figure 5.12: EVENT Vertex Dialog Box

With cancelling edges, like scheduling edges, it is sometimes necessary to designate which of several scheduled
instances of an edge destination vertex is to be cancelled. If several machines are working and one breaks, an edge
attribute can be used to identify which machine has broken so that its job completion vertex can be cancelled. If no edge
attributes are specified, only the first scheduled occurrence (if any) of the edge destination vertex is cancelled. If attributes
are given on a cancelling edge, the future events list is searched for an exact match by vertex type and attribute values;
only the first scheduled event with an exact match of edge attribute values is cancelled. If you want to cancel all scheduled
events of a particular type, an asterisk (*) is placed as the edge attribute. Setting an edge attribute to an * might be useful,
say, if you wish to temporarily shut down a portion of the simulation (e.g., a fire drill in a factory would cancel all job
completion events).

NOTE: Pass array elements explicitly; if Q=3, pass WAIT[3] and Q, not WAIT[Q]

Passing edge attribute values to parameters is illustrated in the following examples.

5.3.1 Many Servers of Many Types: SLOFAST2.MOD

A generalization of the model with two types of servers (SLOFAST0.MOD) is a model of many types of servers with
many servers of each type. Our example will be a production department with N different types of machines of different
models and ages, indexed from 0 to N-1. There may be any number of each type of machine.
 As before, we will designate the type of machine by its age, A, and let S[A] denote the number of idle machines
of type A. If we merely added more event vertices for each type of machine, the model would become cumbersome when
we simulate a system with many types of machines.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

50

 This problem is easily solved using vertex parameters. For example, a START vertex with parameter A will denote
the start of work with a machine of age A. A LEAVE vertex with parameter A will mean that a job has been finished by a
machine of age A. When necessary, we will place vertex parameters in parentheses following the vertex name - e.g.,
START(A) and LEAVE(A). See Figure 5.13 for this model, which represents SLOFAST2.MOD. We have parameterized
everything (state variables, edges, and vertices) that pertains to the type of server with the parameter A.

Figure 5.13: Many Servers of Many Different Types

 This graph may look complicated when viewed as a whole. Perhaps the most confusing part of this model is the
CHECK vertex; which checks each type of server in turn until either an idle server is found (S[A]>0) or all servers are
checked (A>=N-1). These two conditions are the same as the compound condition (S[A]<=0&A<N-1) being false.
 Notice that the graph structure for this model (vertices and edges) is similar to that of our original single server
queue. We can think of these models as being in the same "family" of models. Using event parameters allows us to use
simple graphs to model very large systems; we exploit the similarities of subgraphs by parameterizing them. We could use
this model for very large systems with perhaps hundreds of servers of hundreds of different types and still be able to run
the corresponding simulation program on a small personal computer.

5.3.2 Multiple Servers - Single Line with Waiting Times: BANK2.MOD

NOTE: This example is included to illustrate some subtle complexities in parameter passing. Modeling waiting times with
general priorities for the different jobs waiting in line is easily done using the PUT and GET functions in SIGMA as
explained in Chapter 7. While this example should NOT be used as a prototype for modeling customers in a queue, it is
worth studying to help you develop effective simulation modeling skills. Modeling transient entities using parameters as
in this example, while not as easy or general as using PUT and GET, does, however, result in a faster running simulation.
 BANK2.MOD keeps statistics on the waiting times of individual customers in a multiple server queue (e.g., bank
tellers). The event graph for this model is shown in Figure 5.14. This model is an enrichment of BANK1.MOD discussed
earlier.

Figure 5.14: Multiple Server Queue with Customer Waiting Times

RUN

{S[A]=S[A]-1,Q=Q-1} {S[A]=S[A]+1}

LEAVESTART

(Q>0)

ts(A)
CHECK

(S[A]>0)
ARRIVE

ta

{Q=Q+1}

1 A

A

(A) (A) (A)

A+1

S[A]<=0&A<N)

~

~

~

A

{N=,S[1]=,...S[N]=}

RUN

{S[A]=S[A]-1,Q=Q-1} {S[A]=S[A]+1}

LEAVESTART

(Q>0)

ts(A)
CHECK

(S[A]>0)
ARRIVE

ta

{Q=Q+1}

1 A

A

(A) (A) (A)

A+1A+1

S[A]<=0&A<N)

~

~

~

A

{N=,S[1]=,...S[N]=}

RUN

{Q=Q-1,
S=S-1,
NEXT=NEXT+1}

{S=S+1,
W[IN}=CLK-W[IN}

LEAVE

(Q>0)

ts
START

(S>0)
ENTER

ta

{ID=ID+1,
Q=Q+1,
W[ID]=CLK}

(S) (IN)(IN)

~

~

NEXT

ID INRUN

{Q=Q-1,
S=S-1,
NEXT=NEXT+1}

{S=S+1,
W[IN}=CLK-W[IN}

LEAVE

(Q>0)

ts
START

(S>0)
ENTER

ta

{ID=ID+1,
Q=Q+1,
W[ID]=CLK}

(S) (IN)(IN)

~

~

NEXT

ID IN

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

51

The state variables for this model include:

QUEUE The number of customers currently waiting in line.
SERVERS The number of idle servers, initialized each time the model is run.

Additional variables that allow us to model the flow of transient entities are:

W[I] An array of Waiting times for the Ith customer.
ID The customer IDentification number.
IN The identification number of a customer currently IN service.
NEXT The customer NEXT at the front of the line.
IAT Mean Interarrival Time
MST Mean Service Time

Recall that CLK is the current simulated time, initially set at 0 and automatically updated at each event.Our graph now
represents the flow of customers passing through the system. This model has the flavor of a process flow model, where
the process being modeled is that of customers moving through a bank. This model has the same four vertices as the
simpler resident entity model, BANK1.MOD, and their graph structures are very similar. The vertices, along with their state
changes, are as follows.
 The RUN vertex (the first vertex to be executed) is where we initialize the run parameters and start the run. The
event parameters, SERVERS, IST, and MST, are input as initial conditions. The ENTER vertex models the arrival of new
customers. The state changes for the ENTER event are as follows: ID=ID+1 - increments the customer ID counter;
Q=Q+1 - increments the number in line; and W[ID]=CLK - marks the customer arrival time. The START vertex is the start of
service for the customer with identification number = IN. The state changes are as follows: Q=Q-1-decrements the waiting
line; S=S-1 - reduces the number of idle servers; and NEXT=NEXT+1 - updates the ID of the customer next in line. The
event parameter, IN, is the customer going into service.
 The LEAVE vertex models the end of service for the customer IN service. The state changes are as follows:
S=S+1 - frees one server; and W[IN]=CLK-W[IN] – computes the customer waiting time. The event parameter, IN, is now
the customer who was in service and is finishing.
 Here the situation is slightly more complex than in our previous models. However, it is still easy to read our
event graph. The graph allows us to concentrate on one edge at a time. We can concisely describe the dynamics of the
system with one sentence per edge. You should try to identify each sentence in the following system description with an
edge in BANK2.MOD

The RUN begins when the first customer ENTERs the bank. Successive customers ENTER the system every ta minutes. When
a customer ENTERs, if there are idle tellers, then customer ID will START IN service. The same customer STARTing IN
service will LEAVE after receiving service for ts minutes. Whenever a customer IN service finally LEAVEs, if there are still
other customers waiting, the NEXT customer in line can immediately START IN service.

 To clarify these ideas, it is helpful to walk through an example with three servers. Consider this model at time
2.50 (CLK=2.50). Suppose that an ENTER event has just occurred. The entering customer found five customers waiting in
line (Q=5) and no available servers (S=0). The customer at the front of the line is customer 11 (i.e., NEXT=11) and the
last customer in the line is customer 15 (ID=15). The three servers are now serving customers 8, 6, and 10. The customer
who just arrived would be customer 16 (ID+1) and Q would be increased to Q=6. Suppose the random time generated
until the next arrival was 1.71. The next ENTER event would occur at time = 4.21 (2.5 + 1.71). The situation is illustrated
in Figure 5.15

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

52

Figure 5.15: Numerical Example for BANK2.MOD

Customers Waiting In Line

16 14 13 1215 11

8

10

6

Customers
In Service

NEXT=11ID=15

The future events list for this example is given in Table 1. It shows when the three customers currently in service will
LEAVE the system and when the next customer will ENTER.

Table 5.1: Future Events List with Customers 6, 8, and 10

Time Event Priority Attributes

3.243 LEAVE (customer 8) 6 8
4.210 ENTER (next arrival) 6
5.593 LEAVE (customer 6) 6 6
6.478 LEAVE (customer 10) 6 10

At CLK=3.243 the LEAVE event occurs where customer 8 is the customer IN service (IN=8). At this LEAVE vertex, the
total time in the system for customer 8 can be computed as the difference between the current value of the clock, CLK,
and the time customer 8 arrived, W[IN]=W[8]. Since there are customers waiting in the queue (Q=6>0), a START event
will be scheduled to occur without delay at time 3.243. The value of the vertex parameter, IN, which indicates which
customer is starting "IN" service, will be the current value of NEXT (11) and will be passed by the edge from LEAVE to
START. The START event will occur with parameter IN=11 and schedule a LEAVE event with customer 11 (say at time
8.243). The current value of IN is the attribute value for the parameter IN of the LEAVE event that has just been scheduled.
Also, in the START event vertex, NEXT will be increased to 12 since customer 12 is now at the head of the line. The system
and future events list now looks like Table 5.2. When the ENTER event occurs at CLK = 4.210, the identification number
of the customer who is last in line is increased to ID=17.

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

53

Table 5.2: Future Events List After Customer 8 Leaves and 11 Starts Service

Time Event Priority Attributes

4.210 ENTER (next arrival) 6
5.593 LEAVE (customer 6) 6 6

6.478 LEAVE (customer 10) 6 10
8.243 LEAVE (customer 11) 6 11

We see that only the values of edge attributes are placed on the list of scheduled future events. All connection with the
value of an attribute and the particular state variable or expression that was evaluated to get that attribute value is lost
once the event vertex is scheduled.
 BANK2.MOD is a fairly complicated simulation. There are two SIGMA functions (called PUT and GET) that place
transient entities (customers) in ranked lists (queues) and make this model very simple by eliminating the need for event
parameters or edge attributes. Using these functions is a more straightforward way to model queues of transient entities
with much greater ease and generality as explained in Chapter 7.

Only the values of edge attribute expressions are placed on the events list. These values are assigned to the list of
vertex parameter State Variables when the event is later executed. Do not use array elements as edge attributes.

 Two models, BANK1.MOD and BANK2.MOD, illustrate how the same system can be modeled differently. The first
example focuses only on the behavior of resident entities, those physical system components that remain a part of the
system for long periods (e.g., servers in a queueing system). The second model enriches the first to include details on the
flow of transient entities, those entities that occasionally enter and leave a system (e.g., customers in a queue). Each type
of model has advantages: modeling resident entity cycles tends to be easy and efficient while modeling the details of
transient entity flow gives more information.

The model, BANK2.MOD, actually has unnecessary event parameters. This was done in order to illustrate their use and
perhaps make the model easier to understand. However, since the parameter IN is not used in the START event, it can be
eliminated and an equivalent model is BANK3.MOD with only the START-LEAVE edge passing the attribute value of
NEXT. Note that in BANK3.MOD the value of NEXT is not initialized to 1 but automatically started at zero. This model
was simplified by assuming that customers will be served in the order in which they arrived (FIFO - First in first out). To

Figure 5.14- simplified (BANK3.MOD): Multiple Server FIFO Queue with Customer Waiting Times

RUN

{Q=Q-1,
S=S-1,
NEXT=NEXT+1}

{S=S+1,
W[IN}=CLK-W[IN}

LEAVE

(Q>0)

ts
START

(S>0)
ENTER

ta

{ID=ID+1,
Q=Q+1,
W[ID]=CLK}

(S) (IN)(IN)

~

~ NEXTRUN

{Q=Q-1,
S=S-1,
NEXT=NEXT+1}

{S=S+1,
W[IN}=CLK-W[IN}

LEAVE

(Q>0)

ts
STARTSTART

(S>0)
ENTER

ta

{ID=ID+1,
Q=Q+1,
W[ID]=CLK}

(S) (IN)(IN)

~

~ NEXT

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

54

understand this: open two sessions of SIGMA at the same time and run BANK2.MOD in one and BANK3.MOD in the
other and observe that their outputs are the same even though BANK3.MOD only has one edge passing the value an
attribute, while BANK2.MOD has three such edges.

5.3.3 Limited Rework: REWORK2.MOD

Reworking does not always involve the removal of a coating that has just been applied; it sometimes involves the removal
of original material. In a limited rework model, a particular part is not reworked more than a specified number of times
before it is discarded.

In this model, we will assume that a part can be processed no more than the number of times specified by the
limit, LM. Starting with the rework model (REWORK1.MOD), we can set up a counter, called RW, which is incremented
each time rework is necessary on a part and reset to zero whenever a new part is started. This is easily done by making the
RW counter an attribute of the START vertex. In the REWORK event, this counter is incremented from its current value by
passing the edge attribute value of RW+1 into the vertex parameter RW for the REWORK vertex. When a new part is started, a
value of 1 is passed into the rework counter. This model is implemented in Figure 5.16. If an ENTER and a REWORK
event happen to be scheduled simultaneously, it is important that the REWORK have priority to execute first, which will
be followed immediately by a START event with the proper rework count, RW (because of the LIFO tie-breaking rule
explained in Appendix A). Otherwise the rework count RW will be lost and a phantom server created as in Section 5.1.3.

Figure 5.16: Limited Rework of Jobs

RUN ENTER LEAVESTART

{S=1}

(Q,P,LM)

ta

{Q=Q+1}

(S>0)

{S=0,Q=Q-1} {S=1, R=RND}

(Q>0 & (R>P
 | RW>=LM)

ts

tr

REWORK

{Q=Q+1}

(R<=P&
RW<LM)

(RW)(RW)

1

1

RW RW+1

~

~

~

(RW)

RW

5.3.4 Generalized Assembly Operations: ASSEMKIT.MOD

Using vertex parameters, we also can generalize the assembly operation found in ASSEMKIT.MOD. We let N represent
the number of different types of parts that go into the final assembly (see Figure 5.17). The number of parts needed from
operation I will be given by the input variable P[I]. The graph for this model simply identifies the operation being
finished in the OPRN event with the parameter I, denoting the type of part being produced. In this model, we use the
mathematical notation ∀ to mean "for every"; thus the condition (Q[I]>=P[I]∀I<N) is mathematical shorthand for
"the number of finished parts in queue I is greater than the number of that type of part needed in the kit for every type of
part."

 ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved. Written permission required for reproduction, distribution, or quotation.

55

Figure 5.17: Using Event Parameters in an Assembly Operation

5.3.5 Sequential Service with Blocking: TWOQUES.MOD, TWOQUES1.MOD, and TANDQ.MOD

A queueing network where customers proceed through successive service operations along a single path is called a
tandem queue; basically the queues are lined up one after another. An example of this might be a serial production line
with several different machining steps. Typically, the service time for one of the steps is a bit slower than the others; this
is called the bottleneck. Work will tend to pile up at the bottleneck created by the slower server, and successive servers
will become starved for work. If there is limited waiting space between the servers (called a capacitated queueing system),
blocking might also occur. A server becomes blocked when there is no space to unload a finished job. Both blocking and
starving will degrade the performance of a tandem queue. Attempts to avoid both situations are major tasks to be faced
when designing processing networks with limited waiting space.
 We will start with the simple example of a capacitated tandem queueing network with just two types of servers.
There is a limited amount of waiting space (buffer) for only B[1] jobs in front of the first (upstream) set of servers and
waiting space for B[2] jobs in front of the second (downstream) set of servers. This is modeled in TWOQUES.MOD. We
assume, as we did for our single capacitated queueing model, that customers who arrive when the first queue is full will
simply leave.
 The values of B[1] and B[2] will be input as parameters of the initial RUN vertex. We will use a single state
variable, S[I], to denote the number of idle servers of type I. We also will create another variable W[I] which is the
number of servers of type I who are currently blocked and waiting for the downstream server to finish their current job so
there will be a space to unload.

Figure 5.18: Tandem Queues with Buffers and Blocking

Run

Enter1

End1 Enter2

Start1 Free1 Start2

End2

{S[1]=1,S[2]=1,
B[1]=4,B[2]=5}

{S[1]=S[1]+1}{Q[1]=Q[1]-1,
S[1]=S[1]-1}

{Q[2]=Q[2]+1,
W[1]=W[1]-1}{W[1]=W[1]+1}

{Q[1]=Q[1]+1} {Q[2]=Q[2]-1, S[2]=S[2]-1}

{S[2]=S[2]+1}

Arriv

ta

ts[1] ts[2]

(Q[1]<B[1])

(S[1]>0)

(Q[2]<B[2])

(Q[1]>0) (S[2]>0)

(Q[2]>0)

(W[1]>0)

~ ~

~~

~~~

 
 

{S=S+1,Q[N]=Q[N]-1}

OPRN

t[I]

{S=1} {Q[I]=Q[I]+1}

I

(I)

{S=S-1}

KIT PACKASSEM
(S) ts

(Q[N])(Q[I]>=P[I]     I<N)

A 

{Q[I]=Q[I]-P[I]     I<N,
Q[N]=Q[N] +1}

A

~~

~

RUN
(N,P[I]’s)

{S=S+1,Q[N]=Q[N]-1}

OPRN

t[I]

{S=1} {Q[I]=Q[I]+1}

I

(I)

{S=S-1}

KIT PACKASSEM
(S) ts

(Q[N])(Q[I]>=P[I]     I<N)

A 

{Q[I]=Q[I]-P[I]     I<N,
Q[N]=Q[N] +1}

A

~~

~

RUN
(N,P[I]’s)



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

56 

 The event graph for two queues in tandem, shown in Figure 5.18, looks a bit complicated but it is rather 
simple—again, read only one vertex and its exiting edges at a time and let the graph take care of keeping it all connected. 
Try to associate each sentence in the following description of the model's dynamics with a one or more edges in the event 
graph in Figure 5.18 - read a sentence, then look at the graph before reading the next sentence making sure that you 
understand the logic. 
 

 The simulation Run is begins with the first customer Arrival. A new job Arrives every ta minutes. If 
the Arriving job finds space in front of queue 1, it will Enter queue 1. Jobs Entering queue 1 can Start if 
there are idle servers. After Starting on process 1, a job will End after a delay of tS[1] minutes.  
 
After a job Ends process 1, if it then finds space in front of queue 2 it will Enter queue 2 and immediately 
Free its server for process 1. The newly Freed server for process 1 will Start work if there are more jobs 
waiting in Queue 1.  
 
The job Entering  queue 2 can  Start work at queue 2 if there is an idle server. Jobs that Start in process 2 
with End processing tS[2] minutes later. When a job Ends processing at queue 2, it will Start the next waiting 
job, if any, in queue 2 making a waiting space in its buffer to Free any blocked servers for queue 1. 

 
 A more complex technique for modeling networks of queues with limited waiting space is to pass event 
parameters indicating whether or not a resource is blocked. This is illustrated in the model TWOQUES1.MOD. 
 We can generalize the tandem queue model to include any number of queues in series by having an additional 
vertex parameter that indicates which queue is involved in each event. For example, the ENTER1 and ENTER2 vertices can 
become a common ENTER vertex with the parameter, I, indicating which queue is being entered. This general tandem 
queue is modeled as TANDQ.MOD. 
 
5.4 Multiple Resources  
 
Sometimes several resources must be available for an event to happen. For example, in a factory it may be necessary that 
both a worker and a machine be idle before a part can be processed. Assigning 0 to the "not-available state" makes 
multiple resource constraints very simple to model. If several types of resources are needed to schedule an event, simply 
list the names of these resources on the scheduling edge in your SIGMA graph. If WORKERS is the number of idle workers, 
PARTS the number of parts available, and MACHINES the number of idle machines, then the edge condition, WORKERS & 
PARTS & MACHINES, is sufficient to check if all three resources are simultaneously available (assuming, of course, that 
there are no codes for states of the workers and machines that are negative numbers). 
 The reason this works is that in SIGMA (like C) zero indicates a condition is false and any non-zero value 
indicates it is true. Thus, the implicit condition (WORKERS & PARTS & MACHINES) is equivalent to the explicit 
condition (WORKERS>0 & PARTS>0 & MACHINES>0) - as long as there is no logic error that makes the number of 
workers, parts, or machines become negative! In fact, the implicit test is preferred to the explicit one in that it allows 
variables to go negative which turns out to be a great help in detecting errors in logic. 
 Our next model enrichment is a conceptual prototype for models where several resources are required to do a 
task. Here the machines are semi-automatic—they only need to be loaded and unloaded by workers. Once loaded, 
processing is automatic. Since one of the prime motivations for automation is to reduce labor requirements, we will 
assume that there are fewer workers than machines. We will add the event vertices, STRTL (start loading) and ENDL (end 
loading), to model the worker loading a job onto a machine and the vertices, STRTU (start unloading) and ENDU (end 
unloading), to model the worker unloading a machine. It is necessary that there be both an idle machine and an idle 
worker to start loading a job onto a machine.  
 
5.5 A Problem in Finance: BONDRATE.MOD 
 
So far we have focused on models of queueing systems that are applicable to such areas as manufacturing, health care, 
and communications. The applications of SIGMA are by no means limited to these systems. Here we will use SIGMA to 
analyze a problem in finance: determining fair pricing for coupon bonds in the presence of randomly fluctuating interest 
rates. The simple model we will develop can serve as a basis for more complicated cash stream analysis; indeed, this 
model can be enriched to study financial risk in general cash flow scenarios. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

57 

 In determining a fair price for a coupon bond (or any other investment), it is important to consider 
alternatives. For our example, we consider the decision faced by an investor who is offered shares in a variable rate 
mutual fund with a guaranteed minimum interest of 8%. Interest returns on this kind of investment are expected to remain 
about 15% over the next 5 years, but are highly variable. A more conservative option is being offered by an investment 
banker: a 5-year coupon bond that pays $10,000 at the end of each year with a $100,000 value upon maturity. How much 
should our investor be willing to pay for the coupon bond? 
 Discount factors are used to account for interest. With an interest rate of I for a particular year, cash is 
worth (1+I) as much at the end of the year as at the first of the year. Equivalently, cash at the end of the year is worth 
1/(1+I) as much at the beginning of the year; the factor, R=1/(1+I), is called the discount factor for that year. 
Therefore, multiplying a cash payment at the end of the year by R gives its present value. 
 In addressing this problem, we will assume that yearly interest rates for the mutual fund can be modeled 
using a normal probability distribution with a mean of 15% and standard deviation of ± 5%. Our simulation can be used 
to simulate thousands of replications of the next five years. For each replication we can determine the fair price for the 
bond. If the bond is offered at less than this price, the investor would have been better off buying it. In a few seconds, the 
investor can use our simulation to gain 5000 years of experience before making a decision. The simulation for this 
SIGMA is BONDRATE.MOD, shown in Figure 5.19. 
 

Figure 5.19: Event Graph for Pricing of a Coupon Bond 
 

 

Run

Cash

Flow

Term
 

 
 
 
 
Our model has the following input variables. 
 

LIFE Life of the bond until maturity 
INT Average annual interest rate over the life of the bond 
STD Standard deviation of the interest rate 
MINR Minimum interest from alternative investment 
PAYMENT The coupon bond yearly cash payment 
VALUE Face value of bond at maturity  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

58 

 
 
 
The following intermediate variables are used in our calculations. 
 

N Index for year during planning horizon 
I Normally distributed random future annual interest rate 
R Cumulative discount rate  
NREP Number of replications you wish to run 
REP Index for which replication currently is being run  
CFLAG Flag indicating if flow diagram desired, 1/0=yes/no) 

 
The model computes the following for each year of the investment life. 
 

CASH End of year cash flow (only for cash flow diagrams) 
PRICE Fair price of bond on maturity  
NPV Net present value of cash flow (before taxes)  

 
 The dynamics of this model are simple; all of the action takes place in a single vertex loop where each year's 
interest rate is generated. Then the net cash flow for the year is discounted back to the present and added to the net present 
value of the investment. Initially, the cumulative discount factor is set to R=1. Next, a loop with year, N, going from 1 to 
LIFE is executed. For every year, the computations are the following. 
 

I=NOR{INT;STD} Generate the year's variable interest rate 
I=MAX{I;MINR} Guarantee the minimum interest rate 
R=R*(1/(1+I)) Compute cumulative discount factor for the year 
CASH=PAYMT Place payment in the cash flow stream 
NPV=NPV+CASH*R Roll cash back to the present 

 
 In the last year when the bond matures, the face VALUE for the bond is collected. This VALUE is rolled back to the 
present and added to the net present value of the investment in exactly the same manner as for each annual cash payment.  
 

NPV=NPV+VALUE*R Roll cash back to the present 
 
The result is the fair price of the bond, which is the net present value of the same amount of cash invested in the variable 
rate mutual fund for the simulated five-year period. 

Of course, many more scenarios should be explored before funds are committed. These experiments should 
consider alternative models for the future interest rates. The model structure would remain essentially unchanged. Such 
experimentation only takes a few seconds.  
 Starting with this model, it is possible to build a very sophisticated, customized, financial risk model. In fact, a 
New York investment bank uses a SIGMA model to explore the pricing of "cocktail" bonds, which can be cashed in one 
of several foreign currencies. 
 
5.6  Project Management (PERT/CPM): PERT.MOD  
 
In a large project, such as the construction of a new building or the development of a major software package, there are 
typically several activities that may proceed in parallel as well as some precedence constraints among the different 
activities. When erecting a building, it might be possible to have the windows installed at the same time as the plumbing 
and electrical wiring; if so, these three activities can proceed in parallel. On the other hand, there might also be 
precedence requirements among activities: the scaffold must be finished and secured before starting the outside facing; the 
frame must be finished before starting work on the roof, etc. When planning or bidding for a large project it is important 
to know as much as you can about how long it might take to finish before resources are committed. 
 A popular technique for managing large projects is to study activity precedence networks, which use graphs 
showing the activities that must be completed before others can start (see Figure 5.20). The end of each activity is 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

59 

represented by a node and the duration of the activities by the edges. In Figure 5.20, activity B must be finished before 
activities D and E can be started; therefore, the node, END_B, also represents the simultaneous starting of activities E and D. 
 
 

Figure 5.20:  Activity Precedence Network for a Project in PERT.MOD 
 

 
 

END_A

END_C

END_D

END_F

END_B END_E

DoneStart

 
 
 
 
 
 The most common approaches to the static analysis of these networks are called PERT (Program Evaluation and 
Review Technique) and CPM (Critical Path Method). These two similar techniques are discussed in most textbooks on 
management or industrial engineering. Traditional CPM and PERT assume that the activity durations are either known or, 
if random, independent of each other. Clearly, in a real project the activity times are random as well as dependent (e.g., 
bad weather, labor disputes, or competition for resources generally will delay more than one activity). Using simulation, 
we can "dry-run" a project hundreds or thousands of times to learn what might happen before we submit a bid or commit 
to a contract. 
 We will illustrate this with a simple example. Suppose we are planning a project that has the activity precedences 
given in Table 5.3 and graphed in Figure 5.20. 

 
Table 5.3:  Activity Precedence for a Project 

 
 

Activity Must Follow Activities COUNTER[I] 

A None 0 
 

B A 1 
 

C None 0 
 

D B and C 2 
 

E B and D 2 
 

F C 1 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

60 

 
 
 

The event graph on your SIGMA screen for this project will look exactly like the activity precedence network in Figure 
5.20. Associated with each vertex, I, is a counter of unfinished precedent activities, initialized to equal the number of 
incoming edges for the vertex.. We will call this activity counter, N[I]. The counter for the project START vertex is 
always 0, and the counter for the DONE vertex in this example is 2 The state change for each vertex is simply to decrement 
its counter by one, N[I]=N[I]-1. All edges have the condition that the counter for the originating vertex has been 
reduced to zero (N[I]==0) indicating that there are no more unfinished precedent activities. The delay times are simply 
the activity times associated with activities that end at the destination vertices; they can have any distributions you want 
(e.g., they might be dependent on a weather pattern you generate).  
 
5.7 Modeling Transient Entities 
 
 

Most of our models so far have dealt primarily with resident entities: the servers and the waiting lines. Suppose that we 
want to know the average waiting time in line for each customer. The easy way to do this in SIGMA is to use the PUT and 
GET functions in Chapter 7. If we modeled each customer, their average waiting times would be easy to compute (as we 
did with BANK2.MOD). However, modeling transient entities in a queueing simulation may require more computer 
memory and significantly greater processing time. Furthermore, as the simulation becomes more congested, it will 
become less efficient. It is not uncommon for transient-entity-oriented network simulation languages to become so 
congested that they abort a run. When the run aborts, there is often no useful information given about that run, possibly 
just the message that the run has terminated with an error! Thus, the most interesting runs of the simulation (when the 
system was the busiest) and the most expensive (when the most customers were simulated) are exactly those runs that are 
aborted. Not observing the simulated system when it is congested can lead to an overly optimistic evaluation of system 
performance. Pure resident entity models are considerably more efficient; furthermore, this efficiency does not degrade as 
the system becomes congested.  
 
5.7.1 Little's Law 
 

A situation where we do not need transient entities is when we are only interested in aggregate information about the 
transient entities, such as the average customer waiting time. Suppose that we want to know the average time spent by our 
customers waiting for service during a simulation run. We will denote this average waiting time as W. To observe 
customer waiting times, we might enrich (and complicate) our simulation by including each customer in our model. 
Alternatively, we could leave our model like it is and use the idea behind "Little's Law" from queueing theory to 
indirectly estimate W without adding transient entities to our model. We will illustrate this with a straightforward 
dimensional analysis. 
 Say we have N customers in a resident entity simulation run that is T simulated hours long. Denote the observed 
average queue length as L customers. The average number of customers waiting in line during the run multiplied by the 
amount of simulated time gives us the total customer-hours spent waiting by all of the customers during the run. If C is the 
total simulated customer-hours, then 
 

C = L*T   (in customer-hours). 
 

If we divide this total customer-hours by the total number of customers simulated, N, we get an estimate of the average 
time each customer spent waiting; 
 

W = C/N = (L*T)/N. 
 

Therefore, by keeping track of the average queue length in a pure resident entity simulation, we can estimate the average 
waiting time of the transient entities. 
 Although this is a popular way to estimate average waiting times in queues and it is used by some commercial 
simulation languages, it is not quite as accurate as directly collecting the waiting times of each customer. This is because 
some customers might be in line when the run ends, causing different numbers of customers to contribute to the numerator 
and denominator of the ratio C/N used to estimate W. Each customer waiting in line contributes to the total customer-hours 
waiting, C, continuously as they wait; however, the total cumulative customer count, N, is only incremented at discrete 
times. If we count customers when they leave, we might overestimate W since customers who have made partial 
contributions to the total customer-hour waiting time have not yet been counted. If we count customers when they enter 
the system, we would tend to underestimate W since customers who remain in line when the run ends will not make their 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

61 

full contribution to the total customer-hours until they leave. We might adjust for this problem by generating the 
unfinished backlog of customer-hours of work for the server at the end of the run and add it to C or, equivalently, by 
cutting off the arrivals and letting the system empty as in the example in CLOSEIT.MOD. 
 
5.7.2 Generalizing the Notion behind Little's Law  (DELAY.MOD) 
 

What if we are interested in more than just the average waiting times of jobs in our system? Suppose we also would like 
to estimate the probability that a job waits less that a specified time—that is, we are interested in estimating the 
cumulative probability distribution function. We can take a different approach to Little's law based on event counts.  
 In Figure 5.21 we have plotted the count of the Arrival events, A(t), and the count of the Start events, 
S(t), in a simulated queue. The long-term average slope for A(t) plot is the number of Arrival events per minute or the 
job arrival rate, λ. Since the queue size neither grows infinite (then A(t) and S(t) would diverge) or negative (then A(t) 
and S(t) cross) in a stable queue, the long term average slope of these two plots must be equal.  
 We can estimate the common slope of A(t) and S(t) easily. The number of jobs waiting in the queue at any time t, 
Q(t), can be computed as the total number of job arrivals minus the number of jobs that have started service, Q(t)=A(t)-
S(t) - the vertical distance between the two event counts. Also at the nth Start event the waiting time of the nth job can be 
computed as the horizontal distance between the S(t) and A(t). We estimate the slope of A(t) and S(t) in the usual manner, 
the average vertical distance (L) divided by the average horizontal distance (W). We therefore estimate the arrival rate 
(known slope), λ, with the ratio L/W. If the estimate is unbiased then in the long run we get L = λW or Little's law.  
 Notice that it is easy to estimate the length of the queue since we need only the event counts at a particular time - 
we don't have to store any information.  
 To compute the waiting times we need the horizontal (along the time axis) distances - we must store information. 
 
 

Figure 5.21: Using Event Counts to infer Little's Law] 
 

 

Event Counts

time

A(t)= Arrivals S(t) = Starts

W[6] (fifo)

Q(8)

Slope = λ = AveQ(t)/AveW[i] = L / W

t=8
1

2

6
.
.
.

 
 

 

Computing with quantities on a vertical cut (at the same time) in the Event Counts plot does not require 
information storage. 

 
Now suppose that we wish to compute the probability distribution,  

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

62 

FW(τ) = Prob{W ≤ τ} 
 

where W is the average time a job waits in the queue. We can easily do this without storing any information. This is done 
by adding a Delay event that is scheduled to occur τ time units after each Arrival event. The Delay event simply 
tells us that a job arrived τ minutes ago. If service has not started by that time, then the customer has waited in queue 
longer than τ. We keep a count of the Delay events that occur by time t, D(t). Whenever a Start event occurs and 
D(t)>S(t), then the job waited in line longer than τ. Let W be the total number of Start events where D(t)>S(t). Our 
estimator of FW(τ) is simply W/S(t) which as t gets large will converge to the correct probability. 
 To understand how this works, study the model DELAY.MOD or draw a hypothetical D(t) plot, like that in Figure 
5.22. D(t) will always be below A(t)-a job obviously cannot experience a delay in the queue until after it has arrived. D(t) 
will cross S(t) horizontally when a service starts before τ and vertically when a job is delayed longer than τ.  
 

Figure 5.22: Adding the Delay Event Count to Estimate the Waiting Distribution] 
 

 

D(t)>S(t) ⇔ Delay<D ⇒ Count to est. Prob{Wait<D} = CDF

Event Counts

time

A(t) S(t)

D

D(t)=A(t-D)

 
 
5.8 Programming with Event Graphs 
 
An event graph can be used as a general flow chart for designing computer programs that have nothing to do with 
simulation models. If all the edge delay times are zero, each vertex would be a block of assignment statements; edge 
conditions would show the logic flow. All branching is represented by edges in the graph, including goto's, if-then-
else, and function calls. The values of edge attributes passed to the vertex parameter variables act like values passed to 
functions, as in a C program. The main difference, and it is an important difference, between event graphs and traditional 
flow charts is branching. In SIGMA more than one branch might be taken, or perhaps none of a set of possible branches 
might be followed.  
 

Recall that when edge conditions are tested they are considered false only if they are equal to zero. 
Expressions for edge conditions that are non-zero are always considered true.  

 
5.8.1  Boolean Variables  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

63 

 
Although condition testing is done on the edges of an event graph, it is possible to evaluate conditional expressions within 
a vertex by using Boolean variables. Boolean variables take the numerical "value" of a conditional expression such as 
(X>Y). The rule is simple: If the condition is true, the value of the Boolean variable is 1; if the condition is false, the value 
of the Boolean variable is 0. Embedding a logic condition in a state change means that the number 1 is substituted for the 
condition if the condition is true and a 0 is substituted for the condition if it is false.  
 For example, you might want to increment the length of a waiting QUEUE if and only if there are no idle SERVERS 
available. This can be done with the single statement 
 

QUEUE=QUEUE+(SERVERS==0) 
 
which is the same as setting QUEUE=QUEUE+1 if (SERVERS==0) and leaving QUEUE otherwise unchanged. This statement 
would model the queue increasing only if there are no servers available to a newly arrived customer. As another example, 
examine the expressions  
 

R=RND, 
Q=54+(R>.5)*3+(R>.7). 

 
Note that here only one random number, RND, is generated. In SIGMA (and in C), this will have the following effect: 
 

Q = 54  with a probability of 0.5  (R<=.5) 
Q = 57  with a probability of 0.2  (.5<R<=.7) 
Q = 58  with a probability of 0.3  (R>.7). 

Another example would be to use three successively generated random numbers, 
X=(RND<.5)+2*(RND<.5)+4*(RND<.5), to generate a value of X uniformly over the integers 0 to 7. There are 
efficient ways to generate a sample from a simple discrete probability distribution.  
 A common use of Boolean variables in event graph modeling is in expressing alternatives, as in the "if-then-else" 
logic structure explained next. 
 
5.8.2  Conditional Expressions (If-Then-Else)  
 
There are several ways to write conditional expressions. Consider the following "if-then-else" sequence in C, 
 

if (X>Y)  Z=W; 
else Z=Q; 

 

In SIGMA, one would either define an edge conditioned on X>Y as in Figure 5.23 or use the expression with embedded 
Boolean variables, 
 

Z=W*(X>Y)+Q*(X<=Y) 
 

in a vertex. If X>Y, the above expression will be equivalent to 
 

Z=W*(l)+Q*(O)=W, 
 

and if X≤Y, it would become 
 

Z=W*(O)+Q*(1)=Q 
 

as desired. Using embedded Boolean variables here is more efficient. 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

64 

 
 
 

Figure 5.23:  If-Then-Else Graph Structure 
 

 
 
 

A
{Z=W}

{Z=Q}

~
~

(X>Y)

(X≤Y)

 
 
 
 
 
5.8.3  Do, While, and Nested Loops  
 
"Do", "while", and "for" loops are easy to implement in event graphs. In fact, loops of code are naturally pictured in the 
graphs as loops. Figure 5.24 shows how the expressions in a block of code called EVENT can be executed with a 
parameter, I, that goes from a value of I=2 to a value of I=7. 
 It is worth going through the logic in Figure 5.24 in detail. We want the state changes in EVENT to be executed 
for the last time when I=7. This will happen here because edge attribute expressions are evaluated only after edge 
conditions are tested as being true. When I=6, the condition on the loop, (I<7), is true; therefore, the value of the 
attribute expression, 7=I+1, is then passed to EVENT parameter, I. This is done by scheduling EVENT on the list of future 
events with an attribute of 7. When EVENT occurs the next time, the first thing that happens is its parameter, I, is set to 7. 
Unless the state changes in EVENT reduce the value of I (which would probably be a programming error), the condition 
(I<7) is now false and the loop is not scheduled.  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

65 

 
Figure 5.24:  Do Event For I=2 to 7] 

 
 

 
 

I+1

EVENT
    (I)

~ (I < 7)

(I ≥ 7)

~2

 
 
 
 

 
 
 Nested loops are only slightly more complicated. In Figure 5.25 there are two loops, an outer loop indexed with 
the variable, I, and an inner loop indexed with J. The values of I range from the constants 2 to 7 as before; however, the 
values of J will range from 0 up to the current value of I. 
 

Figure 5.25: Nested Loops: Do for I=2 to 7 and J=0 to I 
 

 
 

I+1 , 0

EVENT
  (I,J)

~ (I < 7 & J ≥ I)

~

I , J+1

~

(I ≤ 7 & J < I)

2 , 0

(I ≥ 7 & J ≥ I)

 
 
 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

66 

5.9 Model Complexity and Model Size  
 
Although some of the models discussed here may appear complicated at first, keep in mind that a large model is not 
necessarily a complex model. When building simulations, it is important to distinguish between a model that is inherently 
complicated and a model that is large but otherwise simple. Complexity occurs when a model is composed of many 
different types of events; a large simulation might be made up of many events but only a few different types of events.  
 A large simple model might be built from many copies of a few, essentially identical, subgraphs. It is the 
commonalities of these subgraphs that keep the model simple. Indeed, special-purpose-simulators are developed by 
focusing on the commonalities of the elementary components of a particular type of system. For instance, a typical 
commercial factory simulation package will have a generic subgraph to represent a machine as its basic building block. A 
crude model of a factory is built by putting together many machine subgraphs, each of which is distinguished only by 
different parameter values. The parameters for each machine (processing time, distribution of the time between failures, 
repair time distributions, etc.) can be selected from simple menus. The fundamental differences between simple simulators 
like that just described and block-oriented, general-purpose simulation languages are the number and the richness of the 
building blocks available with the language; however, both are limited to a finite set of preprogrammed modules. If you 
want to simulate a situation not already anticipated by the software vendor, you are out of luck. 
 Using event graphs, we can construct a simulator of a large scale queueing network by first developing an event 
graph of the basic building block for the network, a single service center. Using this approach, we can develop a 
simulation of an arbitrarily large queueing network of service operations with several different types of customers. Each 
customer will follow a different path through the service network and will have different sets of service times. (See the 
SIGMA NETWORK model NETWORK.MOD in Chapter 7 where the PUT and GET functions are discussed.) Starting with a 
simple queueing system model like those presented in this chapter, we will quickly build a simulator of an entire queueing 
network. 
 Once we are satisfied with the richness of the event graph of a basic building block, we can then use edge 
attributes and vertex parameters to make as many distinct copies of this subgraph as we want (the picture of our graph 
will not change). The complexity of our model will be determined by the detail we put into the basic building block; the 
size of our model is determined only by the number of parameterized copies of this basic event graph that our model 
generates during a run. It is useful to visualize the basic subgraph of a simulation model as a simulation "molecule" from 
which a larger model can be developed, much like a "crystal" made up of many molecules. 
 
5.10 Continuous Time Simulations: FISHTANK.MOD  
 
This book is concerned mainly with simulating discrete event systems. However, there is another class of systems where 
the values of state variables are modeled as changing continuously. Simulations of such systems are referred to as 
continuous time simulations. Continuous time systems can also be simulated using event graphs and the SIGMA software; 
an example is presented in this section. 
 While discrete event models typically are used to study systems that are on a "human scale," continuous time 
simulations are popular for very large scale and very small scale systems. On a small scale, continuous time simulations 
are used in the sciences and engineering to study such things as the stress on a robot arm or the dynamics of a collection 
of molecules. On a large scale, this type of simulation is used to study interactions in social, astronomical, or economic 
systems.  
 Discrete event simulations have the reputation of being considerably more complicated and ad-hoc than 
continuous simulations. This is largely due to the fact that continuous time systems have an explicit mathematical 
representation in the form of systems of differential and partial differential equations. Differential equations model the 
instantaneous rates of change for the state variables. These rates can depend both on time as well as the values of the state 
variables. In the simplest case, we might have a system with only one variable. The value of this variable at time, t, is 
denoted X(t). The instantaneous rate of change in this variable - i.e., its time derivative, dX(t)/dt - might be given as a 
(perhaps random) function, f(.), of state and time,  
 

dX(t)/dt = f(X(t),t). 
 

 Knowing the state value at time zero, X(0), we can simulate future values of X(t). On the computer, this is done 
recursively using a difference equation to approximate the change in state over a small time step. For a step size of ∆t time 
units, our system can be modeled as 
 

X(t+∆t) = X(t) + f(X(t),t)∗∆t. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

67 

 Typically a continuous time simulation model will involve several state variables, and these will be coupled. We 
need to know the values of the state variables before we 

can compute the changes, and we need to know the changes before we can compute the values. Therefore, the system of 
equations must be solved simultaneously. Approximate methods can be used to perform the integration to simulate the 
state variable trajectory. Consideration of such things as error accumulation requires carefully designed algorithms. There 
is a clear trade-off; a simulation with a smaller time-step will have smaller errors but will also take longer to run. 
Discussions of integration algorithms can be found in any number of texts on continuous time simulation. 
 A realistic but simple example of a continuous time simulation is a model of a large fish breeding aquarium by 
Jean-Didier Opsomer. This model is FISHTANK.MOD. The population dynamics of a tropical fish called a discus is 
modeled. The simplified food chain in this ecosystem model consists of phytoplankton (algae), zooplankton, daphnia, and 
small fish. Several fish may be purchased and introduced into the system at once; they are typically sold one at a time. 
Each population in the food chain is modeled with a linear feeding and piece-wise linear growth rate that depends on the 
relative sizes of each population. In addition to feeding rates, a rate-limiting nutrient, phosphate, is used. Termination 
events for this system are eutrophication (explosive algae growth) and extinction.  
 Using this model, the effects of fish introduction, feeding rate, and phosphate introduction are studied with the 
objective of determining appropriate target populations for the plankton and daphnia. Figure 5.26 shows how the fish 
population changes over time in this model. Like most ecosystem models, the population has a clear periodicity; the 
management goal is to keep the fluctuations in the different populations under control (and the fish population large) so 
that one of the termination events does not occur. 
 
 

Figure 5.26:  A Continuous Time Simulation of a Fish Aquarium, FISHTANK.MOD. 
 

 
 
 

 
5.11 Process Modeling 
 
Many popular simulation packages are based on what is known as a process worldview. (The process approach is also 
sometimes called network modeling.) With this modeling philosophy, the focus is typically on transient entities, such as 
customers in a service system or parts flowing through a factory. Steps followed by these transient entities as they move 
through a system are identified. A simulation model is developed by placing preprogrammed blocks of code in a sequence 
that approximates the actual processing sequence being modeled. The processing of a transient entity is conceptually 
viewed as the entity flowing from block to block. The process modeling viewpoint is possibly the purest form of transient 
entity modeling. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

68 

 Process-oriented simulation languages provide a series of preprogrammed blocks that represent some of the 
typical processing stages in a queueing system. Examples of such blocks include a block to represent the entity waiting 
(i.e., a QUEUE block) and another to represent the start of service (i.e., a SEIZE block). Popular software packages that 
include a process-oriented feature include GPSS, Automod, ARENA, Promodel, SIMAN, Simeo, and SLAM.  
 Although each of the popular process modeling software packages is similar in function, each has its own 
terminology. For example, GPSS provides a GENERATE block, which introduces a transient entity into the system; 
ARENA calls this a CREATE block. Time delay is modeled using an ADVANCE block in GPSS and a DELAY block in 
SIMAN. GPSS and SIMAN both have QUEUE blocks to collect waiting time statistics, and both represent the entity 
waiting for service using SEIZE and RELEASE blocks. (Separate ENTER and LEAVE blocks are used in GPSS to model 
several identical parallel servers, which they call a "storage facility.") Time delays are modeled on the network arrows in 
SLAM, similar to the edge delay times used in event graphs. 
 
5.11.1  GPSS 
 
A schematic diagram of the blocks in a GPSS model that represents a single server queue is shown in Figure 5.27. Here 
the customer enters the system in the GENERATE block and joins QUEUE number 1. If server (number 1) is idle, it is 
SEIZEd and the customer DEPARTs from the line. After the clock ADVANCEs for the service time, the server is RELEASEd 
and the customer exits the system at the TERMINATE block.  
 Event graphs, while much simpler than most process languages to learn and use, are more general. In fact, you 
can build versions of these process languages using SIGMA. See GPSS.MOD for an event graph of the GPSS single 
server queue pictured in Figure 5.27. This model uses the SIGMA PUT and GET functions, described in Chapter 7, for 
queue management. 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

69 

 
 

Figure 5.27:  Block Diagram for a GPSS Model of a Single Server Queue 
 

 

QUEUE

SEIZE

DEPART

ADVANCE

RELEASE

GENERATE

TERMINATE

1

1

1

1

 
 
 
5.11.2  SIMAN.MOD   SIMAN1.MOD and SIMAN2.MOD 
 

SIGMA can be used to build a dynamic Windows subset of the manufacturing-specific simulation language, SIMAN (a 
product of Systems Modeling Co.). Two queuing models have been included here. SIMAN1.MOD and SIMAN2.MOD. The 
first is a basic model containing a subset of SIMAN blocks, where each block is a group of animated event vertices. 
SIMAN2.MOD was built by copying and pasting blocks from SIMAN1.MOD. The data for SIMAN2.MOD are in the text file, 
DISTNS.DAT.   (See Chapter 7 to learn how to create data files that will be read by the DISK{} function.) 

However unlike in SIMAN, you can change the probability distributions of a model while it is running. With 
SIMAN2.MOD on the screen, open the data file DISTNS.DAT (using File/View Output/Text File). Use the Window/Tile 
command to see both the simulation and the data file. Start the simulation and let it run in Graphics mode while you look at 
the output plot. Enter a new valid SIGMA expression, such as 3+BET{.5;.5} for a Beta distribution (using capital 
letters), in the data file while the model is running. As soon as DISTNS.DAT is saved, the new data will be incorporated 
into the model and the resulting changes will appear in the output plot.  

 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

70 

FIGURE 5.28:  SIGMA Simulation of a SIMAN Model. 
 

 
 
 Proponents of the process approach argue that it is natural to focus on the movement of transient entities since 
their motion "catches the eye." Once the definition of each of the preprogrammed blocks in the software package is 
understood, it is a simple manner to string them together into a simulated process. This is certainly one of the more easy to 
use modeling approaches for the beginner and largely explains its commercial success.  
 A disadvantage of the process modeling approach is that modeling certain situations may be difficult or 
impossible to simulate depending on the software you are using. You can only include in your model those features that 
the software vendor has anticipated and provided for with a specific block. Another drawback is that process modeling 
can be very inefficient. For example, a process model of a queue with hundreds of transactions can run much slower (or 
not at all) than the same model with only a few customers. This is because each customer that enters the system 
"generates" or "creates" a separate record in memory. Earlier remarks concerning the trade-offs between resident and 
transient entity models apply here. (Process models that use simultaneous resources are subject to deadlock.)  
 
5.11.3  Petri Net Simulation  PETRINET.MOD 
 
PETRINET.MOD is a animated simulation of a Petri net that illustrates the so-called "activity" approach to simulation 
modeling. Here tokens are removed from "places" (balls) when "transitions" (bars) are enabled. This model can be used to 
simulate two tandem queues. Note that a transparent bitmap is used for some of the vertices. Ungroup one of the "places" 
to see how this is animated. (See the section on animation for more about transparent bitmaps.).  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

71 

 
FIGURE 5.29:  SIGMA Simulation of a timed Petri Net. 

 

 
 
 
Event Graphs are more general than standard timed stochastic Petri Nets and it is easy to convert a Petri Net model to an 
Event Graph - Simply replace all PN Transitions with Timed Edges connected by at most one conditional edge for each 
PN Place. 
 
 
5.12  Exercises 
 
The models referred to in these exercises are SIGMA models. 
 

5.12.1  Batch Arrivals to a Queue 
 

Assume that cars arrive at a drive-up fast food restaurant with equal probability of having 1, 2, 3, or 4 customers in the 
car. Assume that service takes between 25 and 35 seconds per customer and cars arrive every 1 to 3 minutes (both service 
and interarrival distributions are uniform). Modify the carwash event graph in Figure 2.6 to model this system.  
 
5.12.2  Parameter Passing 
 

In the following event graph, plot the values of X at times 0 to 6.5? 
 

 
 
 
5.12.3  Future Events List 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

72 

In a simulated queue with one line and five parallel servers (like BANK1.MOD): 
 

(a) What is the minimum number of events on the events list while the simulation is running? 
 

(b) What type of event(s) does this minimum list contain? 
 

(c) What is the maximum number of events on the list during a run? 
 

(d) What type of event(s) does this maximum length list contain? 
 
5.12.4  Limited Waiting Space 
 

Assume that the waiting line in BANK1.MOD has space for only 5 customers; there are three tellers. The maximum number 
of customers in the system is eight: three in service and five in line. Customers who arrive to find a full system are turned 
away. Change BANK1.MOD to reflect this constraint and re-run the first 30 customer service completions. Print your graph, 
output, and model. Record the number of arrivals that were turned away because the queue was full when they arrived. 
Again calculate the average waiting time for the first 10, 20, and 30 customers. Compute averages by hand or use a 
special statistics gathering vertex). 
 
5.12.5  A Two Server Queue 
 

Consider a queueing system with a single line and two identical parallel servers. The resident entity model, BANK1.MOD, 
and the transient entity model, BANK2.MOD, on your SIGMA disk are simulations of such a system. 
 Modify BANK2.MOD to have a finite capacity in this system of a total of at most 10 customers (a maximum of two 
customers in service and eight waiting in line). Arrivals that occur when the system is full are turned away. Customer 
arrivals occur according to a Poisson process with a constant rate of 1.5 customers per minute. (This is the same as 
exponentially distributed interarrival times with a mean of 1/1.5 = 0.667, given by .667*ERL{1}.) Each server has an 
exponentially distributed service time with mean of 1 minute. The arrival and service processes are all mutually 
independent. The objective for studying this system is to estimate the distributions for the customer waiting times and 
distributions for the server utilizations. 
 

(a) Give the entities in this system (tell which are resident and which are transient). Give the attributes of each 
entity. Also list the sets of entities with their owners and members. 

 

(b) List the events for this system. Give the state transformations for each event. Also give the conditions and delay 
times for scheduling each of the events. Show the relationships between events with an event graph. 

 

(d) What event(s) should be scheduled initially to begin running this simulation for 100 simulated hours? 
 

(e) What event(s) should be initially scheduled to run this simulation for 100 simulated customer service 
completions? 

 

(f) What would happen if a customer tries to ENTER a full queue at the exact same time that another customer 
LEAVEs the server? Which of these two simultaneous events should be executed first? 

 
5.12.6  Sensitivity Analysis 
 

Customers arrive at an ice cream parlor at a rate uniformly distributed between 2 and 6 minutes and are served at a rate 
uniformly distributed between 3 and 8 minutes. Model this queue. After 4 hours, what is the average length of the queue? 
If another scooper is hired, what is the average length of the queue? How many scoopers must be hired to keep the 
average length of the queue below 2 customers? 
 
5.12.7  Fast Food 
 

Customers waiting for fast food are very impatient. If they see 4 or more people waiting in line already, they will not 
enter. At peak hours, customers arrive at a rate uniformly distributed between 0.5 and 3 minutes. With current processes, 
each customer can be served in 2 minutes. Can the processes be speeded up enough to make sure the store never loses 
customers? (no). Can we speed up service so that we have a very low probability of losing customers? (yes). What is the 
necessary processing time for a specified probability for losing a customer that you think is reasonable? Build a model 
that can be used to answer this question. 
 
 
 
5.12.8  Parameter Passing 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

73 

Give the number and types of events that will be on the list of scheduled events at time 21.5 in the following event graph. 
 

 
 
5.12.9  A Bank 
 

(a) Suppose that cars arrive at a bank's drive-through facility at a rate uniformly distributed between 2 and 10 
minutes and each transaction requires 3 minutes. Model this queue.  

 

(b) Now suppose that the bank added two more identical tellers and customers arrive at each one at a uniform rate 
between 5 and 15 minutes. Model this situation by modifying your answer for (a).  

 
5.12.10  The Post Office 
 

(a) Suppose customers arrive at a post office at a rate uniformly distributed between 2 and 3 minutes. A postal 
official can serve each customer at a rate uniformly distributed between 1 and 10 minutes. Model the service at 
the post office. 

 

(b) Modify this model for a post office with 3 postal officials. Upon entry, all customers line up in one queue. The 
first person in the queue is served by the next available official.  

 

(c) Modify this model again for a post office where one lazy clerk takes a 5 minute break (will not serve) after he 
serves 3 customers. 

 
5.12.11  An Assembly Station 
 
A factory mass produces widgets. Each widget has 3 component parts: A, B, and C. Each of these 3 types of parts is 
produced in its own area of the factory and then transported via assembly line to the assembly area. Parts A, B, and C 
arrive at the assembly area every 4, 5, and 10 minutes, respectively. A worker takes a time uniformly distributed between 
5 and 10 minutes to assembly the widget. Model this production process.  
 
5.12.12  Communications Network Repair 
 
A local area network has 100 identical links between work stations. Links fail at random intervals. The time until a 
working link fails has an exponential distribution with a mean of 5 days. Once a link fails, it must wait for a repairman to 
fix it. The time to repair a link has a uniform distribution between 1 and 2 hours. A single repairman is on duty at all 
times. Build a simulation of this maintenance system. Use your model to develop a trade-off curve between performance 
of the system (how should this be measured?) and the number of repairmen on duty. (Hint: Use the model, CARWASH.MOD, 
as a starting place where links (instead of cars) queue up for the single repairman (instead of a carwash machine). Also 
note that the rate that links fail depends on the number of working links at a given time. (This failure process is called a 
state-dependent Poisson process.) 
 
 
 
 
 
5.12.13  A Water Reservoir System 
 

Three water reservoirs (at A, B, and C) serve a city through the pipeline system shown below. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

74 

 
 

 
 
 
Three identical (type 1) pumps at stations a, b, and c pump water from each reservoir to pumping station d. A large (type 
2) pump at d pumps water to another type 2 pump at booster station e, which pumps water to the city. The time until 
failure of a type i pump (i = 1 or 2) is uniformly distributed between 12i and 4(i+1)2  months. Pump failures are 
independent, and pumps are not repaired until the water flow to the city actually stops. Model this system to predict when 
the city will run out of water due to pump failures. 
 
5.12.14  Preventive Maintenance Policy Optimization 
 

A conveyor system has 40 identical rollers, each with a failure distribution uniformly distributed between 20 and 45 days. 
When a roller fails, it must be repaired at a cost of $500. When preventive maintenance is performed on the conveyor, the 
cost is $300+$50*N, where N is the number of rollers replaced. A partial group replacement policy of performing 
preventive maintenance every M months and replacing all rollers over A months old is being considered. Model this system 
to try to suggest reasonable values for M and A.  
 
5.12.15  Elimination of the Future Events List. 
 
Create an event graph that is logically equivalent to the carwash model but does not schedule any events on the future 
events list. (Hint: Use a generic minimum function, min(a,b), to determine the next event time.)  
 

(a) What is the main advantage of your modified model? (Consider speed)  
 

(b) What is the main disadvantage of your model?  
5.12.16  Queues with Blocking 
 
There are three identical and independent servers for each of two tandem queues. There is room for only 3 customers in 
queue 2; when queue 2 is full, no one can exit from any of the first set of three servers until a service completion for the 
second set of servers occurs. 
 

(a) Identify the resident and transient entities along with their attributes. Present your entity-attribute hierarchy in 
outline form. Give the set of possible values for each attribute. 

 

(b) Identify sets of entities and tell which entities (if any) "own" each set and what entities may be members of each 
set. 

 

(c) Describe the discrete events in the cycles of activities for each resident entity. Also describe the events 
in the path of each temporary entity as they flow through the system. For each event tell what state changes occur 
and the conditions for these changes along with what further events will be scheduled or cancelled in a computer 
routine for the event. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

75 

 
5.12.17  Simultaneous Events 
 

In a queueing simulation, BRKDN.MOD (Figure 5.10), if an idle server is scheduled to start a break (STARTBREAK event) 
at the same time a customer arrival occurs (ARRIVAL event), which event should be executed first? No other events are 
on the events list and all other events have the same execution priority. 
 
5.12.18  Nested Loops 
 

(a) Create a nested loop with three index variables: I going from 1 to 4, J going from 1 to I, and K going from 0 to 
I*J. 

 

(b) Create an event graph which finds the sum of all the elements of a 3 by 5 array. 
 

(c) Give the event graph for a nested loop where the inner loop moves twice as fast as the outer loop. 
 

(d) Draw an event graph for a program that produces the entries in a table that translates from 1 to 20 degrees 
Celsius to Fahrenheit. 

 

.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

76 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

77 

 
6 

Building Models, Verifying Simulations, and 
Sharing the Results of Simulation Experiments 

 
 
Three objects must be defined in order for a SIGMA simulation to run: vertices, edges connecting the vertices, and state 
variables. In this chapter you will learn how to create and define these objects and how to make changes to them. 
Moreover, you will learn how to edit and build models while they are running. SIGMA’s ability to let you interact with a 
simulation as it is processing is a valuable logic checking and model enrichment feature. Also valuable for logic checking 
is the Translate to English feature. This feature and others help those not familiar with your model better understand it.  
 
6.1  Creating and Editing an Event Graph 
 
6.1.1  Create Process Mode 
 
The default mode for the mouse in SIGMA is the Create Process mode (⊕). This mode allows you to create a 
connected chain of events simply by moving the mouse and clicking in various locations within the simulation graph 
window. 

If you are not in the Create Process mode, click the right mouse button or clicking on the Create Process 
tool in the toolbar. Clicking the left mouse button in the simulation graph window will cause a vertex to be created. If you 
move the mouse to another location and click the left mouse button again, another vertex will be created as well as an 
edge between the vertices. Clicking on a previously created vertex will create an edge connected to the last vertex clicked; 
no new vertex is created. As you continue clicking, SIGMA will create a chain of event vertices and connecting edges. 
 To make self-scheduling edges (edges with the same originating and destination vertex), simply click twice on 
the same vertex. This is useful when creating an input stream of arrivals to a queue. 
 If you are starting a new graph, your first mouse click will create the initial vertex, which is green. The variables 
in the parameter list for this first vertex are the initial attributes that must be entered in the Run Options dialog box. 
 
6.1.2  Create Single Edge Mode 
 
The Create Single Edge tool (on the SIGMA toolbar) allows you to create a single edge between two existing vertices 
or to create a new pair of vertices. It is useful for adding edges and/or vertices to different parts of your graph or 
connecting graphs copied from one SIGMA session to another. This tool is actually very similar to Create Process 
discussed previously ; however, here only one vertex at a time is remembered. You are first asked to select an originating 
vertex for the edge. If no vertex exists at the location where you click the mouse, one will be created. You then will be 
asked to select a destination vertex. Deactivate the Create Single Edge tool (click the right mouse button or click on 
the Select or Edit tool) before you attempt to enter or alter information about any edge or vertex. 
 
6.1.3  State Variables 
 
The Variables menu is used to define and edit the state variables in your simulation. We call these state variables to 
emphasize that they can be used in any expression, anywhere in your SIGMA model. All state variables in a SIGMA 
simulation must be defined before a SIGMA model will run.  
 When you click on the Create/Edit Variables command under the Variables menu, the State Variable 
Editor dialog box will appear. It is here where state variables are entered or edited. The insertion point will be in the 
Name text box. Enter the name of each new state variable here. Use the mouse or [Tab] to activate the Size, Type, and 
Description text boxes and enter the appropriate information. Clicking Add or pressing [Enter] will cause the state 
variable information to be entered in the list box below. The insertion point will automatically revert back to the Name 
text box. The number of state variables allowed may be limited by the available memory on your machine or the version 
of SIGMA you are using. Be sure to click OK to save changes to the model; if you do not, your changes will be lost. 
 To edit an existing state variable, click on that state variable in the list box. This will cause the state variable 
information to appear in the text boxes above. Use the mouse to activate any boxes where changes are needed, then enter 
the new information from the keyboard.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

78 

 

EDITING STATE VARIABLES: Be sure to press the OK button after clicking Rename, Add, Delete, or Change. 
If OK is not pressed, the changes will be lost.  

 
 The Name you give to a state variable can be used in vertex state change expressions and in expressions for 
edge conditions, delay times, priorities, and attribute strings. State variable names have a maximum length of 8 characters. 
Names should begin with a letter but may be composed of letters and numbers. If you intend to automatically translate 
your model to C, you should use the appropriate naming conventions. Note that two functions reserved for SIGMA (CLK 
and RND) cannot be used as state variable names. In SIGMA, variable names and expressions are in upper-case. This is 
because reserved words in ANSI standard C are in lower-case, and we do not want to confuse C when we translate our 
models to source code. Compilers typically have some non-standard functions added to their libraries, so you must avoid 
using these function names.  
 You can select a Size for a variable. (If Size > 1, it is an array.) The maximum array size, typically four-
dimensional arrays are allowed, may be limited by the free memory you have on your computer or the version of SIGMA 
you are using. Following the convention in C, in SIGMA we start indexing arrays with zero (not 1 as in FORTRAN). 
Array elements in a model can be recycled using the modulus function included in SIGMA. In SIGMA, a variable size 
can be from one to four dimensions. Two-dimensional variables are used for modeling tables of data. To define a variable 
that is a two-dimensional table, specify the maximum size of each dimension separated by a comma (e.g., 5,6). The 
default size is a scalar of size 1. You select the size of each array, within default limits. Array index values can be scalars 
or arrays of real or integer numbers. Real valued numbers are rounded down when used as indices for an array. If X is a 
one-dimensional array with Size=5, we reference the elements of X in SIGMA expressions as X[0] through X[4]. If Y is 
a two-dimensional table with Size=5,6, we can reference the entries as Y[0;0] through Y[4;5]. (Note that indices for 
elements of a table are separated by a semicolon.) 
 At the Type drop-down box, you can choose one of three types of variables currently supported in SIGMA. In 
addition to the usual integer and real (floating point) variables or arrays, you may create a general type of variable called a 
USER variable, which is beyond the level intended for this documentation. 

The Description of each state variable is very important. It is strongly encouraged that at least brief 
descriptions be given whenever a SIGMA object is created.  
 

6.1.4  Editing Vertices 
 
Changes in the values of state variables occur only when a vertex is executed. Formulas for the state changes associated 
with a particular vertex are entered using an Edit Vertex dialog box, which is displayed when the mouse is double-
clicked on a particular vertex. An Edit Vertex dialog box contains the following informational boxes: 
 
Name and Description:  Vertex names must be seven characters or less. Vertex descriptions should be included since 
they provide valuable comments in SIGMA-generated simulation source code.  
 
Trace Event:  The Trace Event mechanism allows the vertex to be traced in the numerical output file. On is the 
default. Thus, if no action is taken, all events will be traced in the numerical output file. Deactivate the vertex by clicking 
the Trace Event check box. Similarly, an event will not be traced if you click the vertex and then click the Trace Off 
command in the Edit menu. The Trace Event box can be turned On or Off in several vertices by holding down [Shift], 
clicking on the appropriate vertices, and then clicking on the Trace Off command in the Edit menu.  
 
Inactive Picture/Active Picture & Transparent Bitmaps:  These features are used for animations. Inactive & 
Active bitmaps allow you to assign two different bitmaps to each vertex so motion can be represented. Transparent 
bitmaps are white in color, (255,255,255) in Windows Paintbrush and RGB(0xFF,0xFF,0xFF) in C. Note that transparent 
bitmaps may slow model execution 
 
New Vertex Shapes:  A vertex can now have one of thirteen shapes, without the need for assigning bitmaps. Use the 
drop down list to change the original vertex shape from a circle to a square, diamond, oval, down triangle, up triangle, 
down arrow, up arrow, right arrow, left arrow,  delay symbol, Enter symbol, or Exit symbol. Thus, SIGMA can be used as 
a general flowcharting tool that also runs a simulation. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

79 

State Change(s):  There are typically one or more state variable changes associated with each vertex. The operators 
available for use are +, -, /, *, and  ̂ for add, subtract, divide, multiply, and exponentiation respectively. Different 
expressions are separated by commas. 
 
Parameter(s):  Parameters are the values of state variables passed as attributes of the scheduling edge. The parameter 
list is a string of state variables separated by a comma. The main value of vertex parameters is in defining the particular 
system entities to which a vertex pertains. For example, suppose that there were two identical machines in a simulated 
factory. The same START vertex may be used for both machines if the vertex has a parameter telling which machine is to 
start. 
 To solidify our understanding of vertex parameters, look at a vertex in a queueing simulation that occurs when a 
customer starts to be served. The state changes are given as the string,  
 

QUEUE[S]=QUEUE[S]-1, STATUS[S]=0.  
 

When this vertex executes, the number of customers waiting in the QUEUE for station, S, is decreased by one and the status 
of the server, STATUS, at station, S, is set equal to 0 (BUSY). A value for the parameter, S, (denoting which of several 
possible service stations is involved) is passed to the vertex as an attribute of the edge that originally scheduled this 
vertex. 
 
Display Variables:  A state variable and its value at a particular time can be displayed near a vertex during a run. The 
current value of the display variable is updated every time any event is executed. To display more then one variable, 
separate each with a comma. Display variables are useful for animation and debugging.  
 
Locations:  This drop-down list shows where a display variable will be located relative to a vertex: to the left, right, top, 
or bottom.   
 
6.1.5  Editing Edges 
 
Edges connect pairs of vertices in a simulation graph and define how one event may cause (or prevent) the occurrence of 
another event. There can be multiple edges between any pair of vertices in the model.  

Information concerning an edge can be found in its dialog box. To open the dialog box, double-click on the edge. 
To change characteristics of an edge, click the mouse on the text box of interest and enter the change from the keyboard. 
An Edit Edge dialog box contains the following input boxes: 
 
Originating and Destination Vertices:  The originating and destination vertices for an edge are entered 
automatically from the event graph. You can change the originating and destination vertices by copying or moving edges 
on a graph. 
 
Pending, Scheduling , and Cancelling Edge Types:  The SIGMA default is the pending edge. Currently both 
pending edges and scheduling edges will schedule the destination vertex. A cancelling edge will cancel the destination 
vertex. (Cancelling edges are represented by dashed lines on the graphical model; pending and scheduling edges by solid 
lines.) When a vertex cancelling edge is executed, it cancels only previously scheduled vertices of the same type as the 
destination vertex of the edge. If the edges have any attribute expressions, only scheduled vertices with parameter values 
that are an exact match with the values of these edge attribute expressions are cancelled. If the attribute on a cancelling 
edge is entered as an asterisk (*), all scheduled occurrences of the destination vertex will be cancelled regardless of their 
parameter values. If a cancelling edge has no attributes, only the next scheduled vertex of the same type as the edge 
destination vertex (if any) is cancelled. 
 
Edge Delay Time:  This is the expression for the delay time between the occurrence of the originating vertex and the 
occurrence of the destination vertex. Cancelling edges have zero delay times; cancelling is immediate, regardless of a 
delay expression or execution priority. 
 If the expression for the condition on a pending or  scheduling edge in SIGMA is true and the delay time 
expression is simply an asterisk (*), SIGMA will execute the vertex state change immediately. This is called pre-emptive 
vertex execution; the vertex is executed without being placed on the future events list. The effect is that the two vertices 
on this edge are condensed into a single vertex. Bypassing the future events list generally speeds up model execution 
without making the state changes for each vertex more complicated.  
 Caution should be used with pre-emptive vertex execution. Since pre-emptive vertex execution overrides 
execution priorities; potential problems in simultaneous vertex execution have to be considered. You should try to avoid 
having a cycle in your graph where all the edges have pre-emptive execution, such as a self-scheduling loop. The resulting 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

80 

loop is likely to run until there is a stack overflow due to recursive function calls. Finally, there must be at least one event 
on the future events list or your SIGMA run will terminate; a generic STOP RUN event (scheduled when the run starts) is 
appropriate if all edges in a model have pre-emptive execution. 

 

If four or five pre-emptive vertex execution edges are placed in sequence, a stack overflow may occur. (While this is 
not a serious limitation, you may be able to avoid this by increasing your Windows stack size.) 

 
Edge Conditions:  The cancelling or scheduling of the destination vertex can be made conditional on the state of the 
system at the time the originating vertex executes. Edge conditions are entered as expressions. The operators you may use 
in edge conditions are +, -, /, *, ,̂ defined earlier in this chapter, along with :  
 

= = (equal to)   >  (strictly greater than) 
!= (not equal to)   <= (less than or equal to) 
<  (strictly less than)  >= (greater than or equal to) 

 

You may combine conditions by using the Boolean operators & (and) and ¦ (or). For example, the edge condition, 
QUEUE>l & STATUS==O, means that the destination vertex will be scheduled to occur (after the edge delay time) only if 
QUEUE is currently greater than one and STATUS is equal to zero. Readers familiar with C should note that the explanation 
mark (!) is not used by itself in SIGMA to negate a general condition and a single & and ¦ are used for Boolean operators 
rather than the double && and ¦¦ used in C. 
 

Execution Priority:  This is an expression for a scheduling edge that computes an execution priority for the destination 
vertex being scheduled. Edge priorities are used to break time ties in scheduled vertices. When two or more vertices are 
scheduled to occur at the same time, the event with the higher priority (the lower numerical value) will be executed first. 
Remaining ties are broken by giving precedence to the vertex that is scheduled last. 
 In SIGMA, the default execution priority is 5. The execution priority of events that are to be executed earlier 
should be changed to a higher priority (e.g., 1, 2.4, 3.6, or 4). The execution priority of events that are to be executed 
later should be changed to a lower priority.  
 If simultaneous events are executed in the wrong order, the logic of the simulation may be wrong. Consider the 
example where a customer arrives at a capacitated queue that is full and a service completion coincides with that arrival. 
If the customer arrival event is executed first, the customer will see a full line and depart. If the service completion event 
is executed first, a space will be made in line for the arriving customer and the customer will not depart. In simulations of 
serial systems (factories, communication networks, etc.), executing simultaneous events in the wrong order can cause the 
model to behave in a very strange manner.  
 No good "rule of thumb" for assigning execution priorities has been devised to replace thinking through the chain 
of consequences of simultaneous events. However, you should be alert to the possibility of simultaneous vertex problems 
whenever the state changes in one vertex and the conditions tested in the exiting edges for another vertex involve the same 
variables. Any two such vertices should have appropriate execution priorities passed to them. The order in which the 
different expressions are computed can be found in the Event Execution Sequence in Appendix A. 
 
Edge Attributes:  Edge attributes are values passed to vertex parameters. Each edge has an attribute list, and each 
vertex has a parameter list. These are simple but powerful modeling tools. The edge attribute list is a string of expressions 
separated by commas. When the originating vertex for an edge is executed, the expressions in the edge attribute list are 
evaluated. These will be the values assigned to the state variables in the destination vertex parameter list when that vertex 
is subsequently executed.  
 For example, consider an edge with attribute list: 
 

X+1,5,QUEUE*N.  
 

Say that the destination vertex for this edge has the parameter list: 
 

Z,N,QUEUE. 
 

Suppose when the originating vertex for this edge is executed, the state variables have values X=5, N=10, and QUEUE=2. 
When the destination vertex is subsequently executed, the values for the state variables Z, N, and QUEUE will be set equal 
to 6, 5, and 20. This assignment is made before any vertex state changes and regardless of the values for X and QUEUE 
when the scheduled vertex executed. The expression QUEUE*N was evaluated when the vertex was scheduled; the values 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

81 

of N and QUEUE at that time were 10 and 2 respectively, so QUEUE*N was equal to 20. The number 20 is literally placed on 
the future events list as an parameter of the scheduled event.  
 

IMPORTANT: Remember that any state variable in SIGMA may be changed indirectly, by passing values to vertex 
parameters, as well as directly, by the state changes in vertices.  

 
 If an edge has more attribute expressions than its destination vertex has parameters, the extra edge attribute 
values are ignored. If an edge has fewer attribute expressions than needed, an error message occurs. 
 

Array elements must be specified explicitly -- e.g., A[3], not A[Q]. 

 
 
 

6.1.6  Moving a Simulation Graph 
 

All or part of a simulation graph can be moved around the graphical window relatively easily. First click on the vertex to 
be moved with the mouse, hold down the left mouse button until the pointer changes shape, and drag the vertex to the 
desired location. Edges are moved by highlighting the edge and then dragging it to a new vertex. To be successful, there 
must be a vertex to serve as a destination for the edge.  
 Multiple edges and vertices can be highlighted using [Shift] and the mouse and moved by clicking the mouse 
on the group and dragging it to the new location. If you wish to move the entire graph, use Edit/Select All. Vertices in 
event graph models can also be moved one pixel at a time by highlighting the vertex and using the arrow keys.  
 
6.1.7  Copying Event Graph Models 
 
SIGMA allows you to copy and paste information within a single SIGMA modeling session or between SIGMA modeling 
sessions. 
 Copy all or part of an event graph by selecting the desired components, clicking on the Edit/Copy command, 
and then clicking on the Edit/Paste command. Move the copied subgraph to the desired location and then connect it to 
the original graph using the Create Single Edge tool. A single edge is copied by pressing [Shift] and also holding 
down the mouse pointer on the desired edge until the mouse pointer changes shape and dragging the mouse to another 
vertex. Move edges that may occupy the same bounding rectangle out of the way so they are not copied also. 
 Copied state variables are added to the current set of state variables; duplicate names are deleted. Vertices that 
have been copied are renamed. Dialog box associated with the copied vertices contain all the information from the 
original vertices. The Copy-Paste feature is particularly useful when developing a model containing similar but 
complex vertices or edges.  

[Ctrl-c] will copy information, [Ctrl-x] will cut it, and [Ctrl-v] will paste it to another area (or to and from another 
Windows application, such as Word for Windows). 

 
 Event graph models (or parts of models) also can be selected, copied, and pasted between different SIGMA 
sessions. First, open the SIGMA session with the model to be copied. Highlight the components to be copied, then click 
on the Edit/Copy command. Open a second SIGMA session and use the Edit/Paste command to paste the first model 
into the new SIGMA session. Move the newly-pasted sub-graph to the desired location. It is suggested that you save 
intermediate graphs under different names. The Copy-Paste feature is also useful when several persons are working on 
different parts of the same simulation model. This permits the modeler (or a team of modelers) to create separate parts of a 
simulation model in different SIGMA windows and later connect them together into a larger simulation.  
 
 
 
  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

82 

6.1.7.1. SIGMA User Tools   
 

Another way to copy previously created models is to SIGMA’s User Tools feature. SIGMA models can 
now be saved as User Tools. This option is easy to do and makes model building faster than ever. 

 There are fifteen User Tool buttons (like the one above) running vertically along the right side of the SIGMA 
screen. With a click of the mouse you can add an entire model into a SIGMA modeling session. In this way, you can re-
use previously created models that have components similar to those desired in a new model. 

To create a User Tool: 
 

1. Open a SIGMA model that you would like to reuse.  
 

2. Click on the Save As command under the File menu. 
 

3. Save the model with the name TOOLN.TOL in the Save Model As dialog box 
 (where N is the tool button number). 

 

 To illustrate, save a model as TOOL1.TOL. (Do not merely rename a model since SIGMA alters models to 
allow them to be appended if they are saved as type *.TOL.) Now whenever you press the ∑1 tool button, the entire 
model you called TOOL1.TOL will be pasted into your current SIGMA modeling session. Note that if you press ∑1 twice, 
both event graphs will be pasted into the same location. It is best to move each new model aside as it is added. Use the 
Create Single Edge button to join the separate event graphs together, and update the Edge and Vertex dialog boxes as 
needed with regard to passing attributes and parameters. 
 
6.1.8  Saving SIGMA Models and Output Plots 
 

If a model has not been saved previously, activate the simulation graph window and click on the File/Save or the 
File/Save As command. This action will produce a dialog box in which you can enter a name for the file where the 
model is to be saved. Again, the convention for naming files containing SIGMA graphical models is to use the .MOD file  
type (e.g., CARWASH.MOD). File names must be 8 characters or less and begin with a letter or number. A backup copy of 
the last model saved is retained with the extension .BAK. 

To save an output plot, activate the simulation plot window, click on the FILE/Save command, and save the plot 
using the .PLT file type (e.g., CARWASH.PLT). You can retrieve a saved simulation plot file by activating the simulation 
plot window, clicking on the Open command under the File menu, and then double-clicking on the file name.  
 
 
 

It is strongly suggested that all SIGMA models be saved with the file type, ".MOD." This is useful for debugging and 
documentation.  

 
 
 
 

6.2  Dynamic Run-Time Model Building and Analysis 
 
SIGMA lets you interact with a model during a simulation. You can alter your model in virtually any way you wish while it 
is running! For example, with a running model, you can change an edge condition or delay time expression by double-
clicking on the edge and making the necessary changes in the dialog box. If you do the same to a vertex, you can modify 
the state changes or displayed variables. You can change the run mode by making changes in the Run Options dialog 
box during a run. You can even add and delete edges or event vertices during a run.  
 
 

Changing a simulation during execution is simple: just make the changes as if the model were not running! 

 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

83 

6.2.1  Changing the Value of State Variable Values During a Run 
 
To illustrate the usefulness of changing variable values during a run, we will examine a simple model of a multiple-server 
single-line queue such as that found in an airport check-in line—AIRPORT.MOD. If you open AIRPORT.MOD, your screen 
should look like the one in Figure 6.1. (This model is very similar to BANK1.MOD but an INPUT vertex has been added.)  
 

Figure 6.1:  A Multi-Server Queueing Model - AIRPORT.MOD 
 

 
 
 

 Start this simulation. Watch the queue increase for a few seconds in the simulation plot window. Next, double-
click on the INPUT vertex; it will not have executed since it is not connected to the graph. The Edit Vertex dialog box 
for the INPUT event should look like the one in Figure 6.2. 
 

Figure 6.2:  The Dialog Box for the INPUT Vertex 
 

 
 When you click on the Execute button in an Edit Vertex dialog box during a run, that vertex will be the next 
event executed. State changes for this vertex will then occur. Try this by pressing Execute in the INPUT vertex. You will 
see the QUEUE jump to 10 in the simulation plot, and the number of idle servers will be reset to 6. Continue to increase the 
number of idle servers in the running model until the system appears to stabilize. Do this by repeatedly editing and 
executing the state changes for the INPUT event. Note that in this model the variable, SERVERS, is defined as the number 
of idle servers. Thus, servers that are busy will stay in the system; only the QUEUE and number of idle servers are changed.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

84 

 To delete servers, double-click on the LEAVE vertex and close the resulting dialog box with the Remove button. 
This will remove the next pending LEAVE event, effectively removing one busy server. 
 The Execute and Remove commands buttons at the bottom of the Edit Vertex dialog box are useful for 
executing an event or removing an event from the future events list during a run. Since the executed event can itself 
schedule or cancel other events, this gives complete run-time control over the future events list.  
 It is good practice to include an isolated empty vertex, like the INPUT vertex in this example, for making variable 
changes during a run. You could use the ASK{} function discussed in Chapter 7 to do the same thing. However, that 
function is more for interactive games, where you want to prompt the model user to make a decision during a run. 
 

NOTE: Change the values of variables during a run to feasible values. For example, you can change QUEUE to a 
negative number if you wish; however, it makes no sense to have a negative number of customers in line. 

 
6.2.2  Changing Edges and Vertices During a Run 
 

Now try double-clicking on the self-scheduling edge for the ENTER event.You can change the time between arrivals by 
editing the delays time in the Edit Edge dialog box. The changes you enter will take effect as soon as you press OK. 
You make change to vertices similarly, just as if the model were not running. Again, changes take effect the next time the 
vertex is executed in the run, or you can force the vertex to execute immediately by clicking on Execute on the dialog 
box. In this manner you can ask "what-if" questions concerning changes in demand rate and number of servers while the 
model is running. 
 
6.2.3  Adding and Deleting Edges and Vertices During a Run 
 

To delete an edge click once on the particular edge and then press [Delete]. (This should be done carefully since you are 
now changing the model logic not just the values of variables.) Delete vertices the same way, by clicking once on the 
vertex you wish to delete and pressing [Delete].  
 

CAUTION: Adding or deleting edges or event vertices during a run may change the model logic. 

 You can connect a vertex to a running model or create a new edge. First click on the vertex that is to serve as the 
origin of the new edge. Next, click the right mouse button to get into Create Process mode. Then click where you 
would like to have a new vertex created. (Click on an existing vertex if you want only a new edge.) Continue clicking if 
you would like to spawn a series of new vertices and edges off an existing vertex. Press the right mouse button again to 
return to Select or Edit mode. Click on the new edges or vertices to open their dialog boxes. You will generally 
alternate right and left mouse clicks as you add new vertices and edit them in a running model. 
 

NOTE: Do not try to delete a vertex while there are grouped vertices in the model. See the chapter on animation for a 
discussion of vertex groups. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

85 

 
6.3 Model Enrichment and Logic Checking 
 
SIGMA has very powerful simulation model enrichment and logic checking features. 
 

6.3.1  Setting up the Logic Checking Environment 
 

One of the most important things to check before you start to verify a simulation model is to insure that all the edges have 
enough attribute expressions for each of the parameters of the scheduled vertex. The most common error is not to have 
enough "initial attributes" in the Run Options dialog box for the parameters of the first vertex. 
 A model verification session will go as follows. Start a SIGMA session and open the model to be checked. (Here 
we will again use CARWASH.MOD.) Open the Run Options dialog box in the Run menu and set the Run Mode to 
Single Step. Next, make the run very short by setting the Stop Time to a small number (10 will do). This is to 
initialize data tracking. Start the run by clicking OK & Run. Press [Enter] several times or click on the Single Step 
tool to execute some events. Press the End Run tool to stop the run. Click Yes when asked to view the output file. 
 At this point you should have three windows tiled in your SIGMA session: a numerical output window for the 
output file listed in your Run Options dialog box (UNTITLED.OUT), the simulation graph, and the simulation plot.  
 Click once on the simulation graph window to activate it. Next, click on View Output/Text File under the 
File menu and then click on CARWASH.MOD; this will open the ASCII text file for your model. (If you don't see 
CARWASH.MOD, press the drop down list under List Files of Types and click Other Files.) Under the Window menu 
select Tile. You should now have four windows showing: a simulation graph, a simulation plot, an output file, and a 
model text file. Activate the simulation graph window and set the Stop Time in the Run Options dialog box to a very 
large number, so your model will continue to run as you verify its logic. 
 
6.3.2  Starting a Logic Checking Run 
 

Press OK & Run to start the run. Make sure you are again in Single Step mode and step through your model by 
pressing [Enter] or clicking on the Single Step tool in the Single Step Window. Every time the "Refresh" arrow 
[] (near the upper left corner of UNTITLED.OUT) is pressed during the run, the output trace will be updated and added to 
the output file.  
 If you have an edge that is not scheduling a vertex as you expected, click on the scheduling vertex (while the 
model is running) to open the Edit Vertex dialog box and set some Display Variables that are tested on the 
bothersome edge. (Enter the names of the variables separated by commas). 
 If you activate the simulation plot window and click on the New command under the File menu, you can open a 
copy of the simulation plot. This plot can be double-clicked to change its plot type. In this manner, you can view several 
plots at once. For example, one could show a histogram and another a scatter plot. Only one plot will be updated during a 
run; the other can used to record the run history. 
 The PAUSE{} function can be used to debug long runs. If you find a logic error at time 1000, you can trap this 
error by scheduling a dummy event with the state change X=PAUSE{} at time 999. Run the simulation in High Speed 
mode until PAUSE is hit, then change the run mode to Single Step, and continue logic checking. 
 
6.4  Automatic Translation of SIGMA Model 
 

SIGMA automatically translates a SIGMA model into both English and C code. 
 
6.4.1.  English Translation 
 

SIGMA’s automatic English translation feature is very useful for checking errors (use with a printed graph), verifying a 
model with persons not familiar with simulation, or supplementing physical animations.  

This feature exploits SIGMA's graph structure to produce an English description of your simulation. Basically 
the two vertices on an edge act as the subject and object of a sentence while the edge conditions and delay times form 
prepositional phrases; the predicate is almost always "schedule" or "cancel."  
 To see the English translation of the carwash model, open CARWASH.MOD. Activate the English translation option 
by clicking the Translate command in the File menu and selecting English from the alternatives. A dialog box will 
appear with the active file highlighted in the File Name text box. Press the OK command button to see the English 
translation, press Yes to replace an existing file, and Yes again to view the file now.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

86 

 The following English description of our basic carwash model was obtained using the Translate command on 
the graphical model. 

 
The SIGMA Model, CARWASH.MOD, is a discrete event simulation. It models an 
automatic carwash. 
 
I. STATE VARIABLE DEFINITIONS. 
 
For this simulation, the following state variables are defined: 
 
QUEUE: number of cars in line (integer valued) 
SERVER: machine is idle/busy = 1/0 (integer valued) 
 
II. EVENT DEFINITIONS. 

 
1. The RUN(QUEUE) event models the initialization of the simulation. Initial 

values for, QUEUE, are needed for each run. This event causes the following 
state change(s): 
SERVER=1 

 After every occurrence of the RUN event:  
 Unconditionally, the car will enter the line;  

that is, schedule the ENTER() event to occur without delay. 
 
2. The ENTER() event models the car entering the line. 
 This event causes the following state change(s): 

QUEUE=QUEUE+1 
 After every occurrence of the ENTER event: 
 If SERVER>0, then start service with the idle machine; 

that is, schedule the START() event to occur without delay. 
 Unconditionally, the next customer enters in 3 to 8 minutes; 

that is, schedule the ENTER() event to occur in 3+5*RND time units. 
 
3. The START() event models the start of service. 
 This event causes the following state change(s): 

SERVER=0 
QUEUE=QUEUE-1 

 After every occurrence of the START event: 
 Unconditionally, the car will be in service for 5 minutes; 

that is, schedule the LEAVE() event to occur in 5 time units. 
 
4. The LEAVE() event models the end of service. 
 This event causes the following state change(s): 

SERVER=1 
 After every occurrence of the LEAVE event: 
 If QUEUE>0, then start service for the next car in line; 

that is, schedule the START() event to occur without delay. 
 
 You can see that if you completed the sentences in the Description line in all of the dialog boxes for the 
vertices and edges in a simulation, the English translation of your model should be quite readable. Close this file. 
 
6.4.2  Translate to C 
 

Once you have verified the logic of your model, you can automatically generate a simulation program in the C 
Programming language using the same Translate feature discussed above. You specify the model (e.g., 
CARWASH.MOD) you wish to have translated and select a  C as the target language; the rest is automatic. 
 To translate a model into C, activate the simulation graph window, click on the Translate command in the File 
menu, and click on C. A dialog box will appear with the file name highlighted (e.g., CARWASH.C). Click the OK button to 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

87 

confirm the file name. Respond Yes if you are asked to replace an existing file and Yes when asked to see the translation 
now. Use the scroll bars to view the entire file.  
 
6.5  Capturing a Simulation and Its Results 
 

The ease of exporting data to word processors makes it much easier to develop reports for simulation experiments. Not 
only can the event graph be included in the summary reports, graphical plots, numerical output, and even an English 
translation of the model can be added to a written report.  
6.5.1  Printing Event Graphs, Simulation Plots, and Output Files 
 

It is very easy to print event graphs, graphical simulation plots, and numerical output files from models created in SIGMA. 
To print a graph, plot, or output file, just activate the appropriate window, click the Print command in the File menu, and 
respond to the Print dialog box.  
 
6.5.2  Using Spreadsheets and Word Processors 
 

SIGMA graphs, plots, and output can be incorporated into modern Windows spreadsheets and word processors. If you 
copy [Ctrl-c], an event graph and then paste [Ctrl-v]. it into a word processing file, you may be surprised at the results. 
Rather than the event graph, you will see the textual description of your event graph (the simulation model data). If, on the 
other hand, you activate the simulation graph, press [Alt-Print Screen], open a word processing file, and then click 
Edit, the event graph image will appear in your file. 
 SIGMA also allows you to copy, cut, or paste dialog box text between a modeling session and another 
application. This feature is particularly useful when entering lengthy, but similar, edge conditions. For example, you could 
write the text using Word for Windows, highlight the text and copy it using [Ctrl-c], then paste it into a SIGMA dialog 
box using [Ctrl-v].  

To move output data from SIGMA into a spreadsheet: activate the simulation plot window in SIGMA, click on 
the Edit/Copy Data command, open the spreadsheet program, and click the Edit/Paste command. To export a 
simulation plot to a word processor: activate the simulation plot window, click on the Copy Plot command in the Edit 
menu, open a word processing file, and click on the Paste command in the Edit menu.  
 
6.6  Exercises 
 

The models referred to in these exercises are SIGMA models. Exercises identified as mini projects are more extensive 
and may take considerably longer than the typical exercise. 
 
 

6.8.1  Event Execution Priorities 
 

Modify CARWASH.MOD so that arrivals occur exactly every 2 minutes and make the execution priorities on every edge the 
same. Run the model for 50 minutes then look at the output. What happens when an ENTER event and a LEAVE event take 
place simultaneously? What event should be executed first if there is an ENTER event and a START event scheduled at the 
same time and QUEUE=1? 
 
 

6.8.2  Pre-emptive Vertex Execution 
 

Using pre-emptive vertex execution, modify the model, CARWASH.MOD, so that the logic of the simulation does not change 
but the number of events scheduled on the future events list is minimized. (Hint: Make some of the edge delay times equal 
to *; you will in effect incorporate the START vertex into both the ENTER and the LEAVE events). 
 Why might the output from a model that uses pre-emptive vertex execution be different from the output of the 
same model where pre-emptive execution is not used, i.e., all * delays are changed to 0? Why might the outputs be 
different even if the two models are logically equivalent in a probabilistic sense (output sample paths have the same 
probability of occurring)? 
6.8.3  Pre-emptive Vertex Execution with Parameter Passing 
 

Using pre-emptive vertex execution (edge delay times set equal to *), modify the multiple server queue, BANK2.MOD, so 
that the logic of the simulation is not changed but a minimum number of events are scheduled on the future events list. 
 
 

6.8.4  System Reliability 
 

Consider two systems, each with 50 identical components. System A is a serial system that fails when the first component 
fails. System B is a parallel system that fails when the last component fails. The times until failure, T, for the components 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

88 

are independent and have beta distributions with parameters 0.5 and 0.2. System B is obviously more reliable; however, it 
is desired to estimate the expected difference between the times until system failure for the two systems. 
 

(a) Model both systems and then estimate the difference between the failure times of the two system. 
 

(b) Would the variance of the sample difference generated in part (a) be biased? If so, in what direction? 
 
 

6.8.5  A Drive-in Bank Window  (Mini Simulation Project) 
 

A drive-in window is added to the side of the bank being modeled by BANK2.MOD. This window is serviced by the same 
tellers as before. The tellers rotate in serving customers at the drive-in window. Each teller will serve one drive-in 
customer and then return to service the line in the bank. If there are no customers at the drive-in window when a particular 
teller's turn comes up, s/he will miss a turn at the window. 
 Drive-in customers arrive according to the same pattern as the customers who arrive on foot (as described in the 
text) except that during the noon hour (12:00 to 1:00 P.M.) drive-in customers arrive at the rate of 2 per minute. Drive-in 
customers will balk if there are three or more cars waiting for service at the drive-in window. Of the balking drive-in 
customers, 80% will try to park their cars in the bank parking lot and walk inside for service. Once a former drive-in 
customer parks and walks inside, s/he will not balk unless the line has more than 20 customers in it. 
 The bank rents parking spaces in an adjacent parking lot for its customers. Currently the bank rents spaces for 10 
cars. Customers desiring parking will wait only 30 seconds in a full lot before balking. Assume that it takes between 2 and 
3 minutes (uniformly) for a customer to travel from the lot to the bank and vice versa (including time to park). 
 To better serve their customers, the bank is considering hiring additional tellers. Each teller costs the bank 
$1500.00 a month in salary and fringe benefits. As an alternative, the bank is considering renting additional parking 
spaces at $150.00 a month each. 
 Experiment with your simulation to advise the bank if they should hire tellers or rent parking spaces (or both). 
State your decision criteria and any additional assumptions that you need to make (e.g., tellers absent from work). 
Evaluate each of your assumption. (Are the assumptions conservative? Are they realistic? Can you confirm them with 
real-world data?) 
 

6.8.6  Variability and System Performance 
 

The model FLOWSHOP.MOD is a simulation of a flow shop where there are several parallel machines at each of N sequential 
stations. A part needs to be processed by only one machine at each station. Run the system for three stations in a series 
where there are 5 machines at the first station, 3 machines at the second station, and 4 machines at the third station. The 
mean processing times (in hours) at each station have uniform distributions with means of 0.2 for each machine at the first 
station, 0.1 for the second station, and 1.5 at the third station. The processing time range is ± 0.05 for all machines. Run 
several 8 hour shifts and increase the processing time range to see the effect of variability on the performance of the 
system. 
 

6.8.7  A Queue with Service Breaks 
 

Modify the model, BANK2.MOD, to more accurately simulate a ticket line at a major airport. At the ticket counter there are 
three agents. The time it takes an agent to serve a single passenger has an ERLANG (3) distribution with a mean of 15 
minutes (5*ERL{3}). Every hour each agents takes a 5 minute break. They rotate breaks so one agent goes on break every 
20 minutes. When an agent's break time is due, s/he will immediately stop whatever s/he is doing and go on break. If the 
agent is busy at the time, the passenger must wait until the agent returns from the  break. An agent will finish the 
remaining service of a customer when s/he comes off break. Customers may not change agents once they start service 
even if the agent goes on break; the agent has their ticket. All passengers arrive at this departure desk in a taxi. The time 
between taxi arrivals has an exponential distribution with a mean of 1 minute. Passengers sometimes arrive in groups to 
share the taxi fare. Each taxi carries between 1 and 4 passengers. The likelihood of a group size of 1 is 0.6, the likelihood 
of a group size of 2 or 3 is 0.15, and the likelihood of 4 passengers arriving in a taxi is 0.1. Customers arrive in groups but 
each is processed alone. Run your model and watch the queue build up. Do you think the queue length will ever stabilize 
or do you expect it to continue to grow in an unbounded manner? 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

89 

6.8.8  Project Management 
 

In the project management model in Section 5.6, assume that the activity times have beta distributions with both 
parameters equal to 0.5 (see Chapter 7) and scaled to be between the limits given in the following table. 
 
 

Activity Must Follow Activities Number of 
Workers 

Time Range 

A None 1 1-3 
 

B A 1 1-5 
 

C None 1 2-4 
 

D B and C 2 3-7 
 

E B and D 1 2-4 
 

F C 2 4-6 
(a) Run the simulation of this project 100 times and estimate the probability that the project will take 

longer than 14 days. 
 
(b) Assume that there are only 3 workers and a task needs the number of workers specified in the table above (tasks 

cannot be done partially, they must be completed once started). Modify the model to account for this resource 
constraint (PUT activities in a queue when their precedence constraints are met but not enough workers are 
available to start; GET tasks from this queue when activities finish.) 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

90 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

91 

 
7 
 

Using SIGMA Functions 
 
A number of predefined functions have been incorporated into the SIGMA simulation environment: functions for reading 
data files, runtime interactions, bookkeeping, mathematics, modeling priority ranked queues, generating random variables, 
and computing statistics. A summary of SIGMA functions is presented followed by a more thorough discussion of some 
selected functions. A table of models that illustrate these functions is at the end of this section. 
 
7.1 Summary of SIGMA Functions 
 
Functions can be placed in expressions, which can be used in state changes, edge conditions, edge priorities, and edge 
attributes. The functions are treated just like any state variable. Arguments of SIGMA functions are in braces {} and 
multiple arguments are separated by semicolons.  
 Functions can often be nested and used as arguments for each other. For example, -6*LN{RND} (a random 
number function used as the argument for a natural log) will approximate an exponentially distributed random variable 
with a mean of 6 (see Chapter 9 for details on random variate generation). Any of the expressions in these functions can, 
of course, be replaced by real constants, which are rounded down if integers are required. Note that you cannot use an 
array as an argument for a function. For example, you should break the function MAX{X[I;J];Y} into the two statements: 
Z=X[I;J], MAX{Z;Y}. 
 

 
NOTE: Arguments of SIGMA functions are in braces {} and  multiple arguments are separated by 
semicolons (;). 

 
 
SIGMA functions are defined below. (All arguments can be general expressions unless otherwise specified.) 

 

ASK{X} will display the value of expression X during a run and ask if you wish to change it. You can type in a 
constant or any other valid expression. If you press Enter, the expression is unchanged. This is useful for 
debugging and interactive gaming. Example: Q=ASK{Q+1} defaults to Q=Q+1 unless you enter some other 
expression or value for Q. 

 

AVE{X} is the cumulative (count) average of the traced variable, X. Use TAV{X} for time averages. 
 

BET{X;Y} generates a standard Beta variate with nonnegative parameters given by the values of expressions X and Y. 
 

CGET{Condition;List} will get the values for the first entity, if any, on list, L, where the general condition, 
CONDITION, is true. This entity is removed and its attributes made available as the elements of the ENT[] 
array. This powerful list and data processing function for modeling priority queues and its companion functions, 
PUT and GET, are discussed in detail later in this Chapter. 

 

CLK is the current simulated clock time (which is automatically updated to the time of each event occurrence) - this is 
commonly used as a state variable. 

 

COS{X} gives the cosine of the expression, X, in real format. 
 

DISK{F;I} reads the I-th number from disk file, F, where I is any valid integer-valued SIGMA expression. If I=0, 
the file is read sequentially. Data files can be read in any (random) order. Details on this function are presented 
later. 

 

ERL{X} generates a standard pseudo Erlang random variate with shape parameter given by the value of expression X 
rounded down to the nearest positive integer. This is the sum of X exponential random variates each with mean 1, 
so M*ERL{1} is a pseudo exponential random variate with mean M. 

 

GAM{X} generates a pseudo gamma random variate with fractional shape parameter given by the value of expression 
X with 0<X<1. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

92 

 

GET{O;L} gets values for the ENT[] (entity) array from list, L, according to option, O. (L is an integer.). More details 
on this and the companion function, PUT, are presented later. The options include: 

 

FST "first" removes and places the contents of the first entry of list, L, into the ENT[] array. Any expression 
with the value of 1 can also be used. 

 

LST "last" removes and places the contents of the last entry of list, L, into the ENT[] array. Any expression with 
the value of 2 can also be used. 

 

KEY "key" uses the current value of ENT[0] to search for a match in list, L. If a match is found, KEY removes the 
entry from list, L, and places its contents in the ENT[] array. An expression with value of 3 can be used. 

 

LN{X} gives the natural log of positive-valued expression X.  
 

MAX{X;Y} gives the maximum of expressions X and Y. 
 

MIN{X;Y} gives the minimum of expressions X and Y. 
 

MOD{Y;X} gives the integer remainder when the value of expression Y is divided by the value of expression X.  
 

NOR{M;S} generates a pseudo normal random variate with mean given by the expression M and standard deviation 
given by the expression S. 

 

PAUSE{} halts the execution of a simulation run. This is useful for debugging, along with the Execute and 
Remove options in the Event Vertex dialog. 

 

PI is defined to be 3.14159 and is used with the SIN{} and COS{} functions. 
 

PUT{O;L} places all of the current contents of the ENT[] array in the list identified with the integer expression or 
constant L according to a ranking criterion given by the option O. More details on this and the companion 
functions, GET and CGET, are presented later.  The options include: 

 

FIF "first-is-first" places the current contents of the ENT[] array after the last entry of list L. An expression with 
the value of 1 can also be used. 

 

LIF "last-is-first" places the current contents of ENT[] before the first entry of list L. Any expression with the 
value of 2 can also be used. 

 

INC "increasing" places the current contents of ENT[] in list L, by increasing ranking of the value of 
ENT[RNK[L]], where RNK is the ranking array for the lists. An expression with the value of 3 can be used. 

 

DEC "decreasing" places the current contents of ENT[] in list L by decreasing ranking of the value of 
ENT[RNK[L]]. Any expression with the value of 4 can also be used. 

 

EVN "even" places the current contents of ENT[] ranked by increasing values of ENT[0] and then by attribute 
ENT[2] to break ties. This function is actually used to place events on the future events list, where ENT[0] 
is the time of the event and ENT[2] is the event execution priority used to break time ties. Any expression 
with the value of 5 can also be used. 

 

RND uses the multiplicative congruential pseudo-random number generator, lcg(), to produce approximately 
"independent uniformly distributed" numbers strictly greater than 0 and less than 1. You choose an initial seed to 
start the generator in the Run Options dialog box. 

 

SET{N} resets all variables to zero and the random number seed to the integer N. If no argument is given, the original 
random number stream continues to be used. This can be used to batch several runs in a designed experiment into 
a single run. 

 

SIN{X} gives the sine of the real valued expression X. 
 

STS{X} is the area under the standardized time series for the traced variable X. 
 

TAV{X} is the cumulative time average for the traced variable X. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

93 

TRI{X} generates a pseudo triangular random variate between 0 and 1 with a mode given by the expression X with 0≤
X≤1. 

 

VAR{X} is the cumulative variance for the traced variable X. 
 

7.2 Reading Data (and Code) from Your Disk  
 

The DISK{} function is used to read data files. This function has two arguments: The first argument is the full 
name of the data file (including the drive and path if necessary), and the second argument is an integer-valued 
expression telling which entry is to be read. When the index is zero, the file is read sequentially. If the end of a 
file is reached, reading data continues at the beginning of the file; this is called wrapping around a file. The data 
file should contain numbers or expressions separated by at least one blank. Extra spaces and ends of lines are 
ignored.  
 

 Use an ASCII text editor such as Notepad (found in the Accessories file in Windows) to create your data file. 
If you use a word processor, save your file in "text" format since its default data format will likely not work. (Be careful 
to avoid "hidden DOS" file extensions - your text editor or word processor might save the file data.dat as data.dat.txt or 
data.dat.doc without you knowing it - then SIGMA will not be able to find the file!). Type in your values or expressions 
for the data you have collected. Each entry needs to be separated by at least one space, not a comma. You can use variable 
names or expressions, but they must have values at the time they are read by your model. Comment lines can be placed in 
data files by starting the line with //. Placing comments at the end of a file will speed processing. Note: In C, DISK does 
not read comments or expressions.  
 Use the Save command (under the File menu) to save your data. (i.e., JUNK.DAT). Make sure to note where the 
data file has been saved. You can view this output file in SIGMA by selecting the Open/Text command under the File 
menu. Select *.DAT or simply type in the name of the file. A new window with your file name will appear. You can edit 
the data from this window. 
 Some examples: a data file, named DATA, on your disk might look like the following: 
 

.06  5  4.0  .3  2.  1   
 

This is equivalent to the file 
 

.06  5  4.0 
.3 2.  1 

 

For a real-valued variable, X, eight successive evaluations of  
 

X=DISK{DATA;0} 
 

would in turn assign the eight values of 0.06, 5.0, 4.0, 0.3, 2.0, 1.0, 0.06, and 5.0 to X. After reaching the 
end of the file, reading would start again at the beginning of the file. The expression X=DISK{DATA;4} would assign a 
value of 0.3 to X since .3 is the fourth entry in the file. Finally, if I=4, X=DISK{DATA;2*I} would assign a value of 5.0 
to X. (We wanted the 2*I=8th entry in the file, and wrapping around occurred.) 
 

As another example: If the data file, QUE.DAT is 
 

11 12 13 14 15 
 

then the following would be the result of different state changes in event vertices 
 

Q=DISK{QUE.DAT;4}   Sets the value of Q equal to 14. 
 

Q=DISK{QUE.DAT;9}   Again, sets Q to 14 (wraps around at file end) 
 

Q=DISK{QUE.DAT;0}   Reads file in sequence, wrapping around at the end. 
 

Q=DISK{QUE.DAT;1+5*RND}   Q is randomly read from the set {11,12,13,14,15} 
 
7.2.1. Reading Data from Tables 
 

To read a data table, consider the file, TOOL.DAT containing the following text,  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

94 

   1    3.5   4   14.4    15.2 
   2    3.7   3   10.0    18.7 
   3    2.5   2   15.4    16.6 
   4    0.5   5   8.4     12.4 
//JID   IST  BIN   MTTF    MTTR 

 

This data can be read with the following Read event where the parameter, I, indicates the row of the table being read 
(See Figure 7.1). Note that there are five entries per row in the table and any comment lines are only at the end of the file!.  
 

Figure 7.1: Reading the Data in Table, TOOL.DAT 
 

{ JID[I]=DISK{TOOL.DAT;1+5*I},
IST[I]=DISK{TOOL.DAT;2+5*I},

  BIN[I]=DISK{TOOL.DAT;3+5*I},
 MTTF[I]=DISK{TOOL.DAT;4+5*I},
MTTR[I]=DISK{TOOL.DAT;5+5*I}}

Read
(I)

I+1

~ (I<3)

~
(I= =3)

0

 
 

 
 

7.2.2. Changing Code from Data files 
 

 Expressions can also be placed in data files and read using the DISK function. For example: if the file A.DAT is:   
 

1 3 Q+4 5.6 3 
 

Then the state change, Q=DISK{A.DAT;3} has the same effect as writing  Q=Q+4. However, altering the right-hand 
side of the state change merely involves changing a data file (A.DAT) rather than changing the simulation code itself. 
Altering code is an extremely powerful and unique feature of SIGMA's DISK function, which does not translate to C. 
However, the other features of the DISK function do translate to C. Thus, the model and the data can operate together as a 
single object. 
 As a more elaborate example, consider the following state change: 

QUEUE=QUEUE+DISK{SIZE.DAT;RND*5+1} 
 

This statement will randomly select one of the first five entries in the file, SIZE.DAT, and add it to the value of the 
variable QUEUE. The second argument of this DISK function is an index that is a random integer (rounded down) between 
1 and 5 inclusive. The above expression can be used, for example, to model arrivals of randomly sized groups of 
customers to a simulated service facility such as a bus station. The possible group sizes will be listed as five numbers in 
the disk file named SIZE.DAT. One of the five different group sizes will be selected at random each time the above state 
change is executed.  Another way to do exactly the same thing is with the state change 
 

QUEUE=DISK{Q.DAT;1}, 
 

where the first data entry in the file Q.DAT is the text expression 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

95 

 

QUEUE+DISK{SIZE.DAT;RND*5+1}, 
 

which is the right-hand side of our previous state change. 
 
 
 
 
 

7.2.3. Trace Driven Simulations 
 

Sometimes, because a client demands it or to debug a model, you may want to drive a simulation model with data read 
from a file. If this data was generated by the system being modeled, the run is called a "trace driven" simulation. (More on 
this can be found in Chapter 9.) To run a trace driven simulation, simply place the DISK function as the edge delay as in 
Figure 7.2. It will read the Kth entry from the data file, simply increment the value of K in event A.  

 
Figure 7.2: A Data Driven Simulation  

 

A B
DISK{DATA.DAT;K}

 
 
 

You can, of course, randomize the reading of this data by replacing K with 1+M*RND where M is the 
number of entries in the data file. This can be rather slow as disk access is one of the slower computer 
operations. 
 
7.3 Interactive Execution 

 

ASK: ASK{E} allows you to change the value of the expression, E, during a run. SIGMA will prompt you for 
the change; you can enter any expression. Pressing [Enter] without entering an expression results in no changes 
being made.  

 
 Suppose you wanted to set a value for the variable, QUEUE, from the keyboard whenever a customer enters. The 
default expression for the state change when a customer enters is QUEUE=QUEUE+1. If you enclose the right-hand side of 
this equation with the ASK function, i.e., QUEUE=ASK{QUEUE+1}, you can enter any valid expression or number for the 
new value of QUEUE that you desire. This is illustrated in the model ASKDEMO.MOD. Of course, you do not need to be 
prompted by the ASK function to change a running model in SIGMA. Just double-click on an edge or vertex and enter the 
changes in the dialog box. 
 Another use of the ASK function is illustrated in FUNCDEMO.MOD. Here, the ASK function appears as an edge 
attribute on the edge from the DISKFN vertex to the NEXT vertex. The ASK function here allows you to override the value 
just read in from the disk, if you desire.  
 Besides allowing interactive simulation (gaming), the ASK function is very useful in debugging a model. You can 
try various values of variables while your model is running and see when the logic breaks down. For example in 
ASKDEMO.MOD, if the server is idle and you enter a value of zero when a customer ENTERs, you will have created a 
"phantom" customer arrival. This will subsequently cause the QUEUE to become negative when this customer (who did not 
join the QUEUE) later LEAVEs! 
 

7.4 Bookkeeping Functions 
 

SET: SET{N} resets your SIGMA variables to zero and the random number seed to N. If no argument is given, 
i.e., SET{}, then the random number stream continues with its next number. The simulation clock, CLK, is also 
set to zero. SET{} returns 1 if successful and 0 if it fails, so it can be used as an edge condition. (In a state 
change, it should appear only on the right hand side of an equation.)  

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

96 

 SET is useful for running full experiments in batch mode. The model, FACTORAL, is a full 2 x 3 factorial 
experiment (normally requiring six runs) done in a single run with the SET function. SET{} does not translate to C. A very 
simple way to replicate is shown in the model INVENTRY.MOD, where several replenishment cycles are replicated; a self-
cancelling edge with an edge condition of SET{} is all it takes to shut off the previous cycle.  
 

CLK: CLK is the current simulated time, which is updated automatically when an event occurs. You cannot 
change CLK. 
 
 
 

7.5 Mathematics Functions  
 

PI: PI is defined in SIGMA as 3.14159. Thus, the Ith value of a cosine function at frequency F is 
COS{2*PI*F*I}. Here the frequency, F, is in oscillations per observation and is a positive number between 0 
and .5; otherwise, the cosine and sine functions have arguments in radians. 
 

RND: The function, RND, imitates the sampling of randomly-valued fractions called random numbers. Random 
numbers are assumed to be independent of each other and equally likely to occur anywhere on the interval 
strictly between zero and one; they are the key to modeling randomness. Random numbers are more properly 
called pseudo-random numbers since they are not truly random by any reasonable notion of randomness; they 
just look random.  

 

 For every run you make of a SIGMA model, you supply a "seed" (in the Run Options dialog box) for the 
random number generator that produces values of RND. Different seeds will produce different random number sequences. 
 Like the CLK function, you use RND as if it were an ordinary state variable. You also do not assign values to RND; 
they are given to you. We can use RND to model a random variable since every time RND appears in an expression it will 
have a different value. 
 Here are some examples: If X is defined as a real-valued state variable, then 
 

X=2*RND and X=RND+RND 
 

are not equivalent statements. X=2*RND takes a single random number and doubles it, producing a value for X that imitates 
a uniformly distributed random variable between 0 and 2. On the other hand, X=RND+RND takes two different random 
numbers and adds them. This produces a value of X that also falls between 0 and 2 but has a symmetric triangular-shaped 
distribution. The expression, 
 

X=M+R*RND 
 

will produce artificial values of X that are independent and uniformly distributed with a minimum value of M and a range 
of R, i.e., between M and M+R. If you define X to be integer-valued, it will be rounded down to the nearest integer from M to 
M+R-1. We will discuss random numbers in more detail in Chapter 9 where using multiple random number streams in a 
single model is explained.  
 

7.6 Cycling using the MOD function 
 
MOD: MOD{X;Y} gives the integer remainder when the rounded down value of expression X is divided by the 
rounded down value of expression Y. If X takes on successive values of 0,1,2,3,4,5,6,7,..., then MOD{X;4} 
repeats the cycle 0,1,2,3,0,1,2,3,0,1,2,3,....  

 

 One common use of the MOD function is to keep track of individual transient entities in a model (if you do not 
want to use SIGMA's PUT and GET functions). Array sizes are kept small by recycling indices. Say you want to keep track 
of individual customer waiting times in a simulated queue. Let WAIT[ID] be the waiting time of the customer whose 
identification number is ID. Assume that no more than M customers will be in the system at one time. When a customer 
arrives, make the following state changes in the corresponding ENTER vertex: 
 

ID=MOD{ID+1;M},WAIT[ID]=CLK 
 

When the customer departs, make the state change: 
 

WAIT[ID]=CLK-WAIT[ID] 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

97 

Of course, the customer ID must be passed as an edge attribute throughout the graph to identify which customer is being 
served. If you recycle array indices in this manner, you must be careful not to reuse an index before it is released by a 
transient entity leaving the system. 
 It is important to check that the number of transient entities (customers) in the system never exceeds M. Even this 
will not insure that entity IDs are not duplicated. This is another advantage of resident entity models. This, in effect, 
means that we are modeling a capacitated queue with finite waiting room for, at most, M customers. If M is large, this is not 
a serious issue. 
 As another example of how the MOD function can be used, consider a bank where there are three tellers 
(numbered 0, 1, and 2). Each teller takes a five minute break once every hour, with a different teller going on break every 
twenty minutes. If the variable, NEXT, is the teller that is next to go on break, then the statement, NEXT=MOD{NEXT+1;3}, 
would make sure that the breaks rotated properly by generating the sequence, 0,1,2,0,1,2,0,.... 
 As a final example, SIGMA was used to model a sensitive machining operation where a ten-second recalibration 
was needed for every five parts. If the normal processing time was seven seconds and N is the part number, the resulting 
processing delay is 7+10*(MOD{N;5}==0). The Boolean variable will be equal to 1 once every five parts, adding the ten-
second recalibration time to the edge delay.  
 
7.7 Using Ranked Lists 
 

PUT and GET: Ranked queues occur whenever the order of service might differ from the order of entity arrival. 
SIGMA has two functions that make it very easy to model priority ranked queues and other types of lists: The 
PUT function puts entries onto lists and the GET function gets entries off from lists. 

 

 Two arrays, ENT[] and RNK[], are used by the PUT and GET functions. We will describe the purpose of these two 
arrays first.  
 The ENT[] array is used exclusively as a buffer for passing information about entities (typically customers) 
joining or leaving ranked queues using the PUT{} and GET{} functions described below. Attributes of individual transient 
entities (e.g. customers in a queueing system) can be assigned to the elements in the array ENT[]. For example, ENT[0] 
might be the customer arrival time, ENT[1] the class of service, and ENT[2] the amount of product to be purchased. The 
state change vector 
 

ENT[0]=CLK, ENT[1]=CLASS, ENT[2]=DEMAND 
 

might model the relevant attributes of a customer. The PUT function places the current values of the ENT[] array into a 
list, which can be thought of as a table with a new row being created by each time a PUT is made to the table. The GET 
function removes a row from this table and makes its contents available as the entries of the ENT[] array - one entry per 
column in the row just removed. 
 The array RNK[LINE] contains the index of the element of the ENT[] array that is to be used in determining a 
entity's position in the line designated by the integer, LINE. 
 The PUT{OPTION;LIST} function places the current contents of the ENT[] array in the LIST. The elements of 
the temporary buffer, ENT, are typically the values of attributes of entities that are joining the queue. LIST is a number, 
variable, integer expression, or function that identifies the queue to be joined. PUT{} options include: 

 

FIF (first-is-first) or any expression with the value 1 - inserts the new entity (the current values of ENT[] array) 
after the last record on the LIST. 
 

LIF (last-is-first) or any expression with the value 2 - inserts the new entity before the first record on the LIST. 
 

INC (increasing) or any expression with the value 3 - the LIST is ranked by increasing values of ENT[K], where 
K=RNK[LIST] is the ranking entity attribute. 
 

DEC (decreasing) or any expression with the value 4 - the LIST is ranked by decreasing values of ENT[K], where 
K=RNK[LIST] is the ranking entity attribute. 
 

EVN (even) or any expression with the value 5 - when the values of ENT[0] for two entities are even, the tie is 
broken by increasing values of ENT[2], with remaining ties broken by "first-is-first". 

 
 

GET{OPTION;LIST} removes a record from the specified LIST according to the OPTION chosen and places its 
contents in the ENT[] array. GET{} options include: 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

98 

 

FST (first) or any expression evaluating to 1 - removes the first entry from the list and place its values in the  
ENT[] array for use in your model. 
 

LST (last) or any expression evaluating to 2 - removes the last entry of LIST. 
 

KEY (key) or any expression evaluating to 3 - removes the first entry of LIST (if any) whose value of 
ENT[0]matches the current value of ENT[0]. 
 
 

 Both PUT{}and GET{}return 1 if successful and 0 otherwise. These functions should be used with care as part of 
an edge condition that might be false since PUT and GET are executed regardless. If used in a state change, they should 
appear only on the right-hand side of an equation, such as  
 

QUEUE[N]=QUEUE[N]+PUT{FIF;N}. 
 

This state change will increase QUEUE[N] (the length of the Nth queue) by 1 when the entity with attributes currently in 
the ENT[] array is put into this queue. The entity can be removed later (with attributes placed in ENT[]) with the state 
change 
 

QUEUE[N]=QUEUE[N]-GET{FST;N}. 
 

Redundant options are for clarity. For example, either pair (PUT{FIF;1} and GET{FST;1}) or (PUT{LIF;1} and 
GET{LST;1}) could be used for a first-come first-served queue. 
 Several sample models using SIGMA’s ranked lists functions, PUT and GET, have been included. 
 
 
7.7.1  Example: Sorting Data (SORT.MOD) 
 
 
 

In the model, SORT.MOD, a SORT event will generate 100 random numbers (called X), placing them in decreasing order 
on a list. The SHOW event gets these numbers of the list sequentially and displays their values. This model is given in 
Figure 7.3. 
 
 
 
 

Figure 7.3: Using PUT/GET Functions to Sort Numbers 
 

{ LINE=4,

RNK[LINE]=6 }

{ X=RND,

ENT[6]=X }

{ X=ENT[6] }

~

~

~

1 1
(I==N)

I+1

(I) (I)

I+1

(I<N&PUT{DEC;LINE}) (GET{FST;LINE})

SORTRUN SHOW

 
 
 
 
 

7.7.2  Example: A Priority Queue (PRIORITYQ.MOD) 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

99 

 
 
 
 
PRIORITYQ.MOD models a queue with several classes of customers with different priorities. This model is in Figure 7.4 
where the edge conditions and delays are omitted as they are identical to those in CARWASH.MOD. There are two types of 
customers, with 50% of the arrivals being in each class. (Note the Boolean expression to determine the customer class.) 
Arrivals are then PUT on the list in increasing order of their priority class. Whenever a service starts, the next customer in 
line is found using the GET function. 
 
 
 
 
 
Figure 7.4:  Modeling a Priority Queue. Note Queue 5 is ranked by ENT[3], which is 

customer priority (the value is either 1 or 2 with equal probability) 
 

{R=1}{R=1,
RNK[5]=3} { ID=ID+1,

 ENT[1]=ID,
 ENT[2]=CLK,
 ENT[3]=1+(RND>.5),
 Q=Q+PUT{INC;5} }

{ Q=Q-GET{FST;5},
 W[ENT[1]]=CLK-ENT[2],
 R=0 }

Run Enter LeaveStart

 
 

 
7.7.3  Example: Time-Constrained Processing (TIMEOUT.MOD) 
 
Time-constrained processing is where two processes must be performed within a certain interval. Examples of time-
constrained processes are common in semiconductor manufacturing, metal foundries, food processing, etc. where priming, 
pre-heating, or cleaning is required before performing a major processing step.  
 For this example, consider a heat and press sequence; parts arrive every ta minutes and must be heated in a 
furnace (taking th minutes) before they can be pressed by a mold press machine (taking tp minutes). The interarrival 
times and both processing steps are somewhat random. The sequence is time-constrained because there is a maximum 
cooling time limit of tc  after a part is heated during which the pressing step must start. If a part waits longer than tc 
minutes after being heated before pressing starts, it must be returned to the furnace for reheating. We will identify each 
part waiting for the mold press with an ID number that is sequentially assigned after the part has been heated. F and P will 
denote the status of the furnace and press respectively (1=IDLE, 0=BUSY). QF and QP will denote the number of parts in 
the queue waiting for the furnace and press.  
 The event graph for this model, which is shown in Figure 7.5, is the complete simulation model. It might seem 
rather complicated at first glance; however, one of the most appealing features of event graph modeling is that the logic in 
each vertex, along with its exiting edges, can be verified in isolation. The graph naturally decomposes into vertices and 
sets of exiting edges that can be examined separately; the graph automatically ties everything together. We read the model 
by examining one vertex at a time along with its set of exiting edges; ignore the rest of the graph as you read each of the 
following paragraphs describing how each vertex in this model works. This model is called TIMEOUT.MOD. 

 
The RUN vertex makes the furnace and press initially idle and requests a value for the cooling limit, tc. The first part 
is then scheduled to ENTER the system. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

100 

When a new part ENTERs the queue for the furnace, QF is incremented. If the furnace is idle (F>0), the part can be 
HEATed. The ENTER vertex also schedules successive new part arrivals. 
 
When HEATing starts, the furnace becomes busy (F=0) and the number of parts waiting for the furnace, QF, is 
decremented. After a heating time of th, the part is READY for pressing. 
 
When a part is READY for the mold press, the furnace is unloaded (F=1), an ID number is assigned to the part, and it 
is PUT into the queue for the mold machine, QP. If there are more parts waiting for the furnace, the next part can start 
to be HEATed. If the mold press is idle (P>0), then the PRESS operation can begin immediately. Cooling starts as 
soon as the part is READY for the press. If part ID does not start its PRESS operation before tc, it will become COLD 
and need to be sent back to the furnace.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

101 

Figure 7.5: Time Constrained Processing: READY puts jobs in Queue 1. Either the PRESS event will 
get them, or they will be COLD when the timer runs out in tc time units. 

 

Run
(tc)

Enter Heat

Ready

Press Done

Cold
(ENT[0])

Redo

{F=1,P=1} {QF=QF+1}

{F=F+1,ID=ID+1,
ENT[0]=ID,
QP=QP+PUT{FIF;1}}

{P=P-1,
QP=QP-GET{FST;1}} {P=P+1}

{QP=QP-1,
QF=QF+1}

{F=F-1,
QF=QF-1}

ta

th

tc

tp

(F>0)

(QF>0)
(GET{KEY;1})

(P>0)

(F>0)

(QP>0)

ID

~~

~ ~
~

~

 
 
 
 

 

When the COLD event occurs, the cooling limit for part ID has been reached. The condition on the edge from COLD to 
REDO checks if the cold part is still waiting to be pressed using the GET function with the KEY option. If this part is not 
still waiting in the mold press queue (list 1), then it must have already started its pressing step. In this case, the GET 
function will not find a match and returns a value of 0; this makes the edge condition false, and the REDO event will 
not be scheduled. Note that the ID value of the part is passed from the READY vertex to the COLD vertex as an edge 
attribute. This ID value is placed in ENT[0] to be used as the match KEY in the GET function to see if that particular 
part is still waiting for the mold press when it became cold.  
 

In the REDO vertex, if the cold part is still in the queue for the mold press (that is, part ID is still waiting in list 1), then 
it is removed from the press queue (QP=QP-1) and placed back in the queue for the furnace (QF=QF+1). If the 
furnace is idle, then HEATing can begin. 
 

The PRESS operation will GET a part out of the queue (if the COLD event has not already removed it) and make the 
press busy. After a pressing time of tp,the part is DONE. If more parts are in the mold machine queue (QP>0), the 
next part waiting (that has not cooled off) can begin its PRESS step. 

The model, TIMEOUTR.MOD, models the same system without using any transient entities, using event cancellation 
instead. It is a faster model for this system and well worth studying; however, it is valid only if tc is a fixed constant.  
 

7.7.4  Example: A General Network of Queues or Jobshop  
 

The model presented in this section illustrates many different aspects of event graph model building - PUT and GET 
functions, multidimensional arrays, DISK input, nested loops, branching, and event parameter passing. The model, while 
very simple, is simulating a more complicated system than those we have seen previously and may be a bit intimidating at 
first. Remember, event graphs allow us to concentrate only on one vertex or edge at a time; read the model logic by 
looking only at one exiting edge at a time.  
 Manufacturing and service systems that are composed of different processing centers where customers or jobs 
move from one processing center to another can be modeled effectively as networks of queues. Such systems are very 
common. In fact, several commercial simulation languages have been developed primarily to model queueing networks. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

102 

In this section, we will start building our own queueing network simulator. The enrichments suggested by the exercises at 
the end of this chapter, if done correctly and efficiently, could result in a modeling tool that is as good or better than many 
commercial simulators. The key difference is that you will have complete control over your simulation program, so you 
can change or enrich it as you see fit.  
 In the material that follows, we will refer to jobs passing through different machine groups. For other 
applications (e.g., hospitals), substitute the appropriate transient entities (patients) and resident entities (departments) in 
the model description. 
 A common example of a queueing network is a production system called a jobshop. A jobshop has several 
different processing centers with one or more identical machines at each center. Often the machine centers are located in 
the same area. Different types of jobs have different routings through the jobshop. In this section, we will use a jobshop as 
our example of a queueing network. While we develop our model, keep in mind any changes you might want to make to 
simulate other types of queuing networks, such as patient flow in a health care system, baggage flow in an airport, or 
information flow through a bank - typically only the terminology and names of variables will change. A good jobshop 
simulation can come close to being a general "all purpose" discrete event system simulator.  
 

7.7.4.1  NETWORK.MOD 
 

The detailed discussion that follows refers to the model, NETWORK.MOD. A verbal event graph of that model is given in 
Figure 7.6, but your will need to open NETWORK.MOD on your computer to follow the details. 
 To make our model specific, we will consider a jobshop with five groups of different types of machines and 
identify each machine group with a particular value of the index, G. This jobshop will process three types of jobs. Each 
type of job will have a different routing and a different processing time. We will indicate the type of job with the index, 
TYPE. In this system, the resident entities are the machines and queues associated with each machine group. The transient 
entities are the jobs flowing through the system. Job processing times are modeled here with an Erlang distribution with 
different means depending on machine group and job type involved. This jobshop is the most advanced system modeled 
in Law and Kelton (1991). 
 We want to simulate systems with up to MAXG different machine groups. MAXG=5 in our example, and we will 
number the machine groups 0 to 4. A dummy sixth machine group (group 5) is used to indicate that a job has left the 
shop. We will denote the number of idle machines in group G as S[G]which are initialized as parameters of the RUN 
event. 
 

Comment: If there were only one type of job in the system, we could get by with a model that includes only resident 
entities (the queues and machines). For each machine group, all machines are identical; therefore, we only need to 
keep track of the number of jobs waiting and the number of machines that are idle. As we know from our earlier 
models, pure resident entity models tend to be much faster and easier to understand than models that include transient 
entities. We can model a single job type easily (see FLOWSHOP.MOD). When there are multiple types of jobs, we still 
would not have to introduce transient entities into our jobshop model, but this involves some fancy bookkeeping 
beyond our current purpose of illustrating the use of priority queues. For model flexibility and efficiency, it is good 
practice to avoid using transient entities as long as possible; this can be done here by not drawing unnecessary 
distinctions between the jobs, just keep counts of the jobs in different states. 

 

 To make it easier to change input when running experiments, most of the specifications for our models will be 
read from disk files. Data driven models are much easier to use than models that must be updated each time a change is 
desired. Data input files sometime are called experiment files or experimental "frames". Chapter 11 explains how you can 
easily conduct large simulation experiments with many runs that use different input and output data files. 
 The successive steps in processing a job are called tasks; the integer, TASK, will be the position that a job is on its 
route. The routing for job type 0 is in Table 7.1. We use a mean processing time of -99 time units for pseudo-machine 
group 5 to make any error of using this group obvious.  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

103 

 

Table 7.1:  Job Type 0 Routing 
 

TASK Machine Group Mean Processing Time 

0 2 0.250 
1 0 0.300 
2 1 0.425 
3 4 0.250 
4 5=(exit) -99 

 
 

 
Comment: Note that jobs can visit a machine group more than once. A process where a job returns to the same 
machine group more than once is called a re-entrant flow. Re-entrant flow occurs where production involves building 
up layers of material as in automobile painting or semiconductor manufacturing.   

 

The state variables we will be using are summarized in the Table 7.2. 
 

 

Table 7.2:  State Variables for Jobshop model 
 

MAXG Maximum number of machine groups 
G Index identifying each machine group 
S[G] Number of idle machines in each group 
Q[G] Number of jobs waiting for each  group 
TASK Current task of a job on its route 
TYPE Type of job - determines routing 
ROUTE[TYPE;TASK] Machine group needed for each task 
MTIME[TYPE;TASK] Mean processing time for each task 
OUTPUT Count of the number of finished jobs 
R Random number to determine job type 
DELAY Cycle time - time a job spends in the system 
ARIV Arrival time of a job - to compute cycle time 

 
 
 
 Our model will have three different types of jobs. Each job type will have its own set of routings through the 
network and a different processing time at each machine group. Since the jobs waiting in a queue are not identical and a 
first-come-first-served dispatching policy is used, we must keep track of the order that tasks are waiting in each line. The 
number of job types can be increased without making the model any more complicated.  In our example, we will have job 
types arrive according to the following probability distribution:  
 
 

Probability   {Type=0} = 0.3,  
Probability   {Type=1} = 0.5, and  
Probability   {Type=2} = 0.2.  

 
 

 By ignoring the details and taking a high-level view of the event graph, we can see basically what is going on. 
The most distinctive feature of this graph are the two triangles in the center area, where two "activity" cycles can be seen. 
One cycle (NextG, Start, Finsh, and back to NextG) is followed by each job as it proceeds through the tasks on its 
routing. A job's task is incremented in the Finsh vertex and the machine group, G, changes whenever the job enters the 
vertex, NextG, to find the next machine group on its route. 
 The other activity cycle (Start, Finsh, NextQ, and back to Start) is the busy/idle cycle of each machine in 
a particular machine group. Around this cycle the machine group, G, does not change. The TASK changes each time the 
machine selects the next job in its queue at the NextQ vertex. Therefore, the upper cycle can be viewed as the activity of a 
transient entity (a job) moving between resident entities (from machine group to machine group). The lower cycle is the 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

104 

activity of a resident entity (machine group) processing successive transient entities (jobs). We still do not identify 
particular jobs except by the TASK they are on, so this is basically a resident entity model.  
 
 
Figure 7.6:  Verbal Event Graph of General Jobshop, where Job Types, j are being Processed by 

Machine Types, m. 
 
 

NextQ
 (m)

Enter

NextG
(j)

Start
(m,j)

Finish
(m,j)

Queue

Exit
(j)

(m,j)

{Job  Waits}

j/
( j done)

m,j

/
( j not done
& m busy)m,j

m,j

j

j

{Job Exits}
{Go To

Next Step }

j

{ End Job j at m }

{ Start Job j
 at m } ( j not done

& m idle )
/

{Create Job Type j }

m

{ Get Next job
 From Queue m }

/
(Queue m is
not empty)

Ts(m,j)

TA(j)

 
 
 
 We will soon read the actual event graph for NETWORK.MOD, so please load NETWORK.MOD on your 
computer. This example is a good test of your comprehension of simulation modeling. Do not let the complexity of the 
graph discourage you; focus on only one exiting edges of each successive vertex at a time. The graph keeps everything 
else tied together; as we will see, this is a rather simple model of a very complicated system.  
 The two central cycles in the graph are where all the action occurs. The rest of the graph merely reads in data, 
computes waiting times, and maintains the queues. You can think of the job cycle and the machine cycle as being two 
"activities" that interact where they share a common edge (i.e., during processing). After a little practice, you should find 
that looking at the paths of temporary entities or the activity cycles of permanent entities on an event graph can tell you, 
pictorially, a great deal about how the system works.  
 We might want to collect job waiting times directly rather then use Little's Law (introduced earlier in Chapter 5). 
We would do this by adding transient entities to our model using the PUT{} and GET{} functions to manage the queues. 
The ENT[] array will serve as a buffer for the attributes of jobs that we wish to put into and get from the queues. We will 
define elements of this array as follows: 
 

ENT[4] = type of job, 
ENT[5] = next task for the job, and 
ENT[6] = time the job entered the shop. 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

105 

The other elements of the ENT array can be used for other job attributes. If we want to give some jobs priority over other 
jobs, we can set the values of the ranking job attribute with the RNK[] array and have priority ranking of the queue by job 
type or arrival time.  
 We explicitly designate the job type with the variable, TYPE, and designate each machine group with the 
variable, G. Job routings and timings are kept in two-dimensional tables. The tables, ROUTE[TYPE;TASK] and 
MTIME[TYPE;TASK], hold the machine groups and the mean processing times for each of the tasks, TASK, involved in 
processing each type of job, TYPE. 
 The total time spent in the system will be collected in an output variable called, DELAY. When a new job arrives, 
we mark its entry time with the variable, ARIV. Besides the use of the PUT{} and GET{} functions to manage queues, a 
major characteristic of this model is that the type of job, TYPE, its current task, TASK, and the time the job arrived, ARIV, 
are passed along the edges. The event vertices and the exiting edges for the new model. 
 

Run Initiation events: 
 

In the Run vertex, we will read initial values for some system constants and start our run. The state changes for this 
event are: 

MAXG=DISK{ROUTES.DAT;0},Q[0]=0,Q[1]=0, Q[2]=0,Q[3]=0,Q[4]=0,Q[5]=0 
The maximum number of machine groups is read from the data file, ROUTES.DAT and the initial queues are set to 
zero. The numbers of machines in each group are input parameters to the Run event. After the Run event, data for the 
routes will be read in the Input loop. 
 

The Input vertex has a two dimensional nested loop reading in the ROUTE and MTIME tables by job TYPE and TASK. 
The data for these tables are in the disk files, ROUTES.DAT and MTIMES.DAT. The state change here is  

ROUTE[TYPE;TASK]=DISK{ROUTES.DAT;0},  
MTIME[TYPE;TASK]=DISK{MTIMES.DAT;0} 

Once the data is read, the first job can Enter the system. 
 

Job Flow Events: 
 

The Enter event is where a new job arrives. Here we determine the job type with the state changes, 
R=RND,   TYPE=(R>.3)+(R>.8) 

To see how this works, recall that Boolean variables like (R>P) are set equal to 1 when they are true and to 0 
whenever the condition is false. Assuming that RND is a true random number, the condition, RND<=.3, will be true 
30% of the time, and both Boolean variables will be zero, making the TYPE=0+0=0. This causes 30% of our jobs to 
be type 0. Similarly, (.3<RND<.8) is true 50% of the time, so TYPE=1+0=1 for 50% of the entering jobs. Finally, 
(RND>.8) is true 20% of the time, making both Boolean conditions true. Thus, TYPE=1+1=2, for the 20% type 2 
jobs.  

After every occurrence of the Enter event, we loop to schedule the next job to Enter. We also schedule the 
NextG event to determine the machine group that is first on the job's routing. The Enter vertex passes the current 
clock time, CLK, into the variable, ARIV, along the edge to the NextG vertex. This sets the time that the job arrived in 
the system and will be used to compute how long it took to process. 
 

The NextG vertex determines the next machine group on a job's route by looking up the machine group, G, in the 
ROUTE table,  

G=ROUTE[TYPE;TASK]. 
If there are idle machines in group G the job can Start processing. If there are no idle machines in the next machine 
group, the job will join the queue in the JoinQ event by passing the type of job, TYPE, the current task, TASK, and the 
job's arrival time, ARIV, into elements 4, 5, and 6 of the ENT[] array, where they will be PUT into queue G. It 
G=MAXG, then the job is finished at a Leave event, which computes its time in the system. 
 

The Start event is essentially the same as for our previous models of queues, it simply decrements the number of 
idle resources of type G.  

S[G]=S[G]-1 
The job arrival time, stored in the variable, ARIV, is merely passed through this vertex to the next vertex. 
 

The Finsh event models the event where a task is finished at a particular machine group. This event causes another 
machine in group G to become idle and the task counter for the job to increment by one.  

S[G]=S[G]+1, TASK=TASK+1 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

106 

After every occurrence of the Finsh event, we determine the next machine group on the job's route in the NextG 
vertex by passing the current task and job type. Also, after the Finsh vertex, if Q[G]>0, jobs are waiting in the queue 
for the newly idle machine in this group, and we schedule the NextQ vertex where we select the next job waiting in 
the queue. 
 

The Leave event computes the total time that the job spent in the system by subtracting its arrival time from the 
current clock time, CLK, with the state change,  

DELAY=CLK-ARRIV. 
 

Queue Maintenance Events: 
 

The JoinQ vertex models the event of a job joining the queue for a particular machine group. This vertex has as its 
parameters, G, ENT[4], ENT[5], and ENT[6], which receive the values of G, J, T, and ARIV that were passed to it 
from the NextG vertex. The single state change,  

Q[G]=Q[G]+PUT{FIF;G} 
places these values for this job first in queue G and increments the value of Q[G] by the value, 1, returned from the 
PUT function. 
The NEXTQ vertex models the selection of the next customer in queue G. The single state change,  

Q[G]=Q[G]-GET{FST;G} 
removes the data for the next customer and places it in elements 4, 5, and 6 of the ENT array and subtracts 1 (the 
value returned by the GET function) from the number of jobs waiting in Q[G]. The values of these elements of the ENT 
array are passed as edge attributes into the parameters, J, T, and ARIV, of the START vertex along with the machine 
group G. 
 

Table 7.3 summarizes all of the state changes in the events in our general jobshop model. Note that this very complex 
system can be modeled with relatively few variables and simple state changes. As we will see in the next section: we can 
actually model this system with only two events using the powerful conditional CGET function. 

 
Table 7.3: State Changes for a General Jobshop Model 

 
Event State Change 

 
 
Enter 

 
 
R=RND,   TYPE=(R>.3)+(R>.8) 

 
NextG 

 
G=ROUTE[TYPE;TASK] 

 
Start 

 
S[G]=S[G]-1 

 
Finsh 

 
S[G]=S[G]+1,   TASK=TASK+1 

 
JoinQ 

 
Q[G]=Q[G]+PUT{FIF;G} 

 
NextQ 

 
Q[G]=Q[G]-GET{FST;G} 

 
Leave 

 
DELAY=CLK-ARIV 

 
 

 
7.7.5  Example: Using the Conditional GET function, CGET 
 
It is possible to get an entity (job or row) from a list (queue or table) conditional on the values of the attributes of the 
entity as well as on any other state variables. To do this use the CGET function. The form of this function is 
CGET{Condition;List} which gets the first entry in the list, List, where the Condition is true. This is useful 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

107 

for example, if one wants to start the first job waiting in line 8, if any, with ENT[3]=2 or ENT[4]>.5, provided the 
Buffer B is not full, and a Worker of skill W is Idle. This can be done with the event edge in figure 7.7. 
 
 

Figure 7.7: Using the CGET Function as an Edge Condition 
 

Check Start

~

CGET{(ENT[3]==2   ENT[4]>.5) & B & W ; 8}

 
 

 
 
A general jobshop like that in the previous example can be modeled using only two vertices. To do this we have events 
for the  jth job type at the ith step of Nj steps. Define the following state variables: 
 

K Number of types of processing resources. 
 

J Number of different job types, each with a different routing. 
 

Mk Number of idle resources of type k. 
 

Qk  Number of jobs waiting in queue for resource, k 
 rank by increasing priority (RNK[k]=2). 
 

Dj,k Priority for job type j at resource k. 
 

ta(j) Time between arrivals of type j jobs. 
 

ts(i,j) Processing times at ith step of job j. 
 

Ri,j The resource type needed by the jth job type at ith step of Nj steps. 
 
 

The jobshop model is given by the event graph in figure 7.8.  
 
 

Figure 7.8: A General Jobshop Model using Conditional Gets, CGET. 
 
 

~ FINISH
(I,J,K)

ENTER
(I,J,K)

ta(j)

ts(i,j)

~

( CGET{Q[K] ≤ M[K] ; K })

I+1, J, R[I+1;J]

~(I = =1)

~

(I<N[J])

ENT[0], ENT[1], K

1, J, R[1;J]

( CGET {Q[K] ≥ M[K] ; K })

ts(i,j)
ENT[0], ENT[1], K

 
 
 
Note that there are only two events with very simple state changes for this general model with multiple types of jobs being 
processed by multiple types of resources. The ENTER event computes job characteristics and PUTs it in a queue. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

108 

 
ENT[0]=I, 
ENT[1]=J, 
ENT[2]=D[J;K], 
RNK[K] = 2, 
Q[K] = Q[K] + PUT{ INC ; K }  

 
The FINISH event decrements the queue after being scheduled with conditional GETs from the queue 
 

Q[K] = Q[K] -1 
 

All the real work is done by the CGET function. 
 

Note: Having SIGMA automatically generate fast C code for a simulator is discussed in Chapter 11. 
Using the CGET function in C requires defining a simple function pointer as detailed in Section B17 of 
Appendix B. 

 
7.8  Generating Random Variables 
 

There are several functions in SIGMA that can be used to generate random variables. These include BET{} for beta 
variates, TRI{} for triangular variates, ERL{} for Erlang variates, GAM{} for highly skewed gamma variates, and NOR{} 
for normal variates. The use of these functions and the generation of other types of random input are discussed in Chapter 
9 on input process modeling. 
 
 
7.9  Statistical Functions 
 

Several functions have been included in SIGMA for statistical analysis. These functions are primarily for model 
diagnostics and are not included in the C translations generated by SIGMA. Note that the variables used as arguments in 
these functions must have been used as traced variables for at least one previous run in the current SIGMA session. The  
more commonly used statistical functions included in SIGMA are as follows: 
 

 
 
AVE{X},  which is the cumulative average of the traced variable, X, 
 

VAR{X},  which is the cumulative variance of the traced variable, X, 
 

TAV{X},  which is the time average of the traced variable, X, and 
 
STS{X},  which is the area under the standardized time series for the traced  
 variable, X. 
 

The cumulative average simply counts the recorded values of a variable and averages them, whereas the time average 
takes into account how much simulated time the variable spends at a particular value. These functions can be nested in 
creative ways. For example VAR{AVE{X}} will be the variance of the average. This can be used, along with batching, to 
tell if the simulated run duration is long enough to obtain a desired relative or absolute precision of an estimator.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

109 

Table 7.4:  Quick Reference to SIGMA Functions 
 

Syntax Operation Input Output Models 
ASK{X} Displays the value of expression, X, during the run 

and allows you to change it 
Any any ASKDEMO.MOD, 

FUNCDEMO.MOD 
AVE{X} Cumulative average of traced variable X Any real IIDNORM.MOD 

 
BET{X;Y} Generates a Beta pseudo-random variate(p.r.v) with 

parameters X and Y 
X,Y>0 real  

 
CGET{C,L} Get first entry from list, L, where condition, C is 

true. 
String, 
Integer 

0/1  

CLK The current simulated clock time None Real  
 

COS{Y} Returns the cosine of Y (Y in radians) Real Real FUNCDEMO.MOD 
 

DISK{F;I} Reads the Ith expression from the file F, to read 
sequentially set I=0 if I>number of entries, the reader 
will wrap around. The file name ,F, must include the 
disk and path if necessary. 

String, 
Integer 

Any FUNCDEMO.MOD 
 
 
 

ERL{X} Generates an Erlang pseudo random variate with 
shape parameter X; an Exponential with mean M is 
generated using M*ERL{1} 

Integer Real BANK2.MOD, 
PRIORITYQ.MOD 

GAM{X} Generates a Gamma pseudo random variate with 
fractional shape parameter X 

0<X<1 Real  
 

GET{O;L} Gets values for the ENT[] array from list L with 
option O: O=1 or  FST (first), O=2 or LST (last), O=3 or 
KEY (key: match ENT[0]) 

String 
or int, 
integer 

0/1 SORT.MOD, 
PRIORITYQ.MOD, 
NETWORK.MOD 

LN{Y} Returns the natural log of Y any Real FUNCDEMO.MOD 
MAX{Y;X} Returns the maximum of X and Y any Real FUNCDEMO.MOD 
MIN{Y;X} Returns the minimum of X and Y any Real FUNCDEMO.MOD 
MOD{Y;X} Returns the integer remainder of Y is divided by X integer Integer FUNCDEMO.MOD 
NOR{M;S} Generates a Normal (M,S2) pseudo random variate  any* Real IIDNORM.MOD 

PAUSE{} Halts run when executed, for logic checking in high-
speed mode 

none 0/1  
 

PI Predefined constant = 3.14159    
 

PUT{O;L} Puts the present ENT[] array on list L according to 
option O: O=1 or FiF (first is first),  O=2 or LIF (last is first), 
O=3 or INC (increasing by ENT[RNK[L}]), O=4 or DEC 
(decreasing by ENT[RNK[L]]), O=5 or EVN (breaks even ties) 

(L) 
integer 

0/1 SORT.MOD, 
PRIORITYQ.MOD 
 
 
 

RND Generates a Uniform (0,1) pseudo-random variate none Real CARWASH.MOD 
 

SET{X} Sets all variables (including CLK) to zero and sets 
the random number seed to X; with no argument, the 
original stream continues 

integer 0/1 FACTORAL.MOD, 
INVENTRY.MOD 
 

SIN{Y} Returns the sine of Y (Y in radians) real Real FUNCDEMO.MOD 
STS{X} Area under the standardized time series for the traced 

variable X 
any Real IIDNORM.MOD 

TAV{X} Time average of traced variable X any Real IIDNORM.MOD 
TRI{X} Generates a Triangular p.r.v. on (0,1) with mode X 0<X<1 Real  
VAR{X} Cumulative variance of traced variable X any Real IIDNORM.MOD 
 
Specify real parameters using a decimal (i.e. 3.0 instead of 3) to avoid problems in C translation. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

110 

7.10 Exercises 
 
Exercises identified as mini projects are more extensive and may take considerably longer than the 
typical exercise. 
 
 

7.10.1  A Priority Serving System 
 
(a) The system administrators of a mainframe computer have devised of method of partitioning processing time. 
Every job submitted to the mainframe is assigned a priority: urgent and not urgent. When two jobs have the same priority, 
the first one submitted is processed first. However, when two jobs are of different priority, the job with the higher priority 
is always processed first. Urgent jobs arrive at a rate uniformly distributed between 3 and 5 hours and have required 
processing times uniformly distributed between 1 and 10 hours. Not urgent jobs arrive at a rate uniformly distributed 
between 30 minutes and 1 hour and have processing times uniformly distributed between 15 minutes and 2 hours. Model 
the mainframe queue assuming every job, once it is started, is finished without preemption. 
 
(b) Now model the mainframe queue where jobs can be pre-empted by priority. In other words, if a job is submitted 
to the mainframe while a job of lower priority is processing, the lower priority job is discontinued until the job of higher 
priority finishes. When a pre-empted job returns to the mainframe, it does not need to be entirely reprocessed. It is 
processed only for the required time remaining when it was pre-empted. Use the PUT and GET functions in modeling this 
system. 
 
7.10.2  Empirical Distributions 
 
How can the function, DISK{FILE;I}, be used to generate a random variable from an empirical distribution function with 
data in the disk file, FILE? (Hint: Consider a random index, I.) 
 
7.10.3  Condensing Events 
 
Use pre-emptive event execution (edge delays equal to * to "condense" several event vertices into a single event) to make 
the simulation, NETWORKR.MOD, run as fast as possible without changing the output. Be careful about using * too often and 
causing a stack overflow as explained in the text. 
 
7.10.4  Worker Assignment Problem 
 
In the model, TWOQUEUE.MOD, there are 2 servers assigned to a constant time set-up operation followed by 6 workers 
assigned to a random time processing operation. Is this a good assignment of the 8 workers? Experiment with the model 
to determine an optimal allocation of the 8 workers, assuming that all of the workers are equally skilled and paid the same 
amount. Justify your answer (how do you define "optimal" and why?) as well as the way you designed your experiment. 
 

7.10.5  Execution Priorities 
 
Look at the model, TWOQUEUE.MOD. This is a model of two multiple-server queues in a series, where a constant time setup 
operation is followed by a random duration processing operation. The first set of servers has a constant service time of 5 
minutes. The second set of servers has a random service time with an Erlang(1) (i.e., exponential) distribution with a 
mean of 4 minutes. 
 
(a) Click on the double edge between the STRT1 and LEAV1 vertices. Change the execution priority on the edge 
from the LEAV1 vertex to the STRT1 vertex from 3 to a 5. Notice that QUEUE[1] goes negative before time 60. Why? 
 
(b) Change the execution priority on the self-scheduling edge from STRT1 to STRT1 from 1 to 6. Notice that the 
number of idle servers for queue 0 goes negative right away. Why? 
 
 

7.10.6  Welding Line (Mini Simulation Project) 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

111 

The following system is used to weld hoods to automobiles. There are several parallel welding robots. The cars pass by 
the robots on conveyor lines. Transfers between lines are done using cranes that run north and south on fixed tracks. A 
schematic of the system for four welding robots is given below. 
 

 
 

Type Percent Average Weld Times 

A 31% 50 (sec.) 
 

B 16 63 
 

C 16 25 
 

D 16 41 
 

E 12 155 
 

F  9 155 
 

 

 The input rate is 93 jobs per hour. There are six types of automobiles produced at this plant. The average welding 
times and percentages for each type of car are given below the figure. The time it takes for the crane to pick up a car or 
release a car is 8 seconds. For simplicity we consider only an approximation to the effects of crane acceleration. The first 
section of track traveled takes 9 seconds and every additional section traveled without stopping takes 6.5 seconds. A 
section of track is between each of the loading or unloading points on a crane track. For example, the crane takes 15.5 
seconds to travel two sections of the track without stopping. 
 Cars must leave the welding operation in the same order that they enter it since components added later on in the 
assembly process must be for the right car. Set-up times for some of these later operations are very large, thus, requiring 
that set-ups start before cars arrive. The last crane in the schematic above is to sort the cars as they come out of the hood 
welding operation. 
 Write a simulation program for this system. For now, consider each of the times to be deterministic. Your model 
should allow up to three cranes per track and up to six parallel robots. You may use any computer language that you wish 
for this assignment. Flesh out your model and translate it to C to fill in the details (see Chapter 11). Use "entities" and the 
PUT and GET functions. 
 In the automobile production sub-system simulation model, add 33 seconds to each of the average welding times 
given. Now make the welding times uniformly distributed with a range of 20% of the mean. All confidence intervals are 
to be at the 90% level. 
 

(a) Run the simulation of the automobile production system five times for 200 cars each. Use 
independently selected pseudo-random number generator seeds for each replications. Compute a 
confidence interval for the mean throughput rate of the system (rate that cars exit). 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

112 

(b) Run the simulation for one run of 1000 automobiles. Compute confidence intervals for the mean throughput rate 
using the batched means method with 5 batches.) 

 
(c) Comment on the above experiment, including identification of possible sources of error. 
 
(d) Given that there are spaces for 15 automobiles in the system, decide how these 15 buffer spaces should be 

allocated. Justify your design and give confidence intervals for the throughput rate. 
 
 

7.10.7  A Barge Unloading System (Mini Simulation Project) 
 

River barges arrive at a warehouse carrying "piggyback" truck trailers mounted on flatcars.  These flatcars are to be 
unloaded and mounted on railroad flatcars that will be taken away by trains. There are 4 trailers on each barge. The time 
between barge arrivals has a uniform distribution between 3 and 5 hours. A barge must wait for a single berth before it 
can dock. A single crane is used to move the trailers from the barge to the warehouse and from the warehouse to the 
flatcars. After being unloaded from the barges and mounted on flatcars, the trailers are taken to a large rail yard where 
they are assigned to trains according to their destination. 
 Once a barge has docked, 4 spaces in a warehouse must be free in order for unloading to start. There are 20 
trailer spaces in the warehouse. The time to unload a barge is uniformly distributed between 1 and 3 hours. A train arrives 
at the warehouse to collect the waiting trailers. The time between train arrivals has a uniform distribution between 3 and 7 
hours. The train has between 6 and 12 empty flatcars when it arrives. It takes 30 minutes to load each trailer onto a flatcar.  
 

(a) Develop a resident entity simulation model that will keep track of the lengths of all important queues and 
utilizations of the warehouse space, berths, and crane. Clearly state any assumptions you are making in your 
model. Run this model for a time of 20 (hours) and trace the number of trucks unloaded. Run the model for 100 
hours in High Speed mode and use the output file see how many trucks were unloaded from the barges. What 
is the major bottleneck: the berth, number of available flatcars, warehouse space, the crane? 

 
(b) Consider the purchase of an automatic crane that cuts the barge unloading time by 50%. Model this (reduce the 

delay time between the start unload event and the end unload event). Run the new model for 100 time units and 
observe (from the output trace) the number of trucks unloaded. Do not create any new state variables. 

 
(c) Add the necessary (two) event vertices that permit the crane to shut down every 10 hours for 1 hour of preventive 

inspection/maintenance. The crane will finish what it is doing before undergoing inspection.  
 
(d) Eliminate the inspection/maintenance procedure and have the automatic crane break down every 8 to 12 hours 

(uniformly distributed). Have the repair time be uniformly distributed between 0.5 and 1.5 hours. If the crane is 
busy when it breaks, the current unloading operation must be restarted from scratch (use a cancelling edge). Run 
the simulation for 100 hours and compare with the systems in parts (a), (b), and (c). (This problem was suggested 
by G. Samorodnitsky.) 

 
 
 

7.10.8   Buffer Capacities 
 

In the model, NETWORKR.MOD, assume that each machine group has a finite capacity queue. For machine group, G, no 
more than B[G] jobs can be waiting. If the next queue for a job is filled, that job does not free its machine; it is blocked. 
Enrich your model to include this constraint. Be careful not to send two parts to a queue that only has space for one; when 
the second part arrives, it will find the queue full! (Hint: Reserve space in the next queue before freeing the current 
machine.) Assume that B[G] is 4 for all machine groups, and run at least 20 jobs through your model. Debug your model. 
 
 

7.10.9  A Layout (Mini Simulation Project) 
 

Using NETWORKR.MOD as a starting place, include the transit times between the various machines. Assume the job transit 
data is deterministic (conveyors?) and is provided in an array called TRANS(I,J), which is the time it takes to travel from 
machine group I to machine group J. The transit times are proportional to the distance between machine groups (state 
assumptions you are making). What data structures in C could be used effectively in this model? (Hint: The ENTITY 
structure). Tell how the structures will be used. How is your model improved with these structures (if at all)? 
 
(a) Translate your model to C.. Use this simulation (or your model) to help determine an efficient high-level layout for a 

jobshop (i.e., the shapes, sizes, and locations for the different machine groups. Each machine takes 16 square yards of 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

113 

space (including space for the job being processed and aisle space). Each job waiting in the queue takes 4 square 
yards of space. Transit between machine groups is by overhead crane, so travel is rectilinear not line-of-sight. Transit 
time between machine groups is 5 seconds per yard traveled between the head of each input queue. Write a report that 
explains and sells your design. 

 
(b) Assume that you will make $10 for each type 1 job completed, $20 for each type 2 job completed, and $30 for each 

type 3 job completed. You may sequence the jobs in each queue in any manner you see fit. With the machines 
specified in the text, lay out the factory to maximize the rate that income is generated and minimize the size of the 
factory. 

 
(c) To help solve this problem, design and run experiments to decide how to allocate waiting space for work-in-process 

(be creative). Explain the rationale for your experimental strategies: How did you initialize the system? Determine 
run lengths? Use variance reduction techniques? Compute confidence intervals? 

 
 
7.10.10   Processing Priorities 
 

Assume in NETWORK.MOD that completed type 1 jobs are worth twice as much money as type 2 jobs, which in turn are 
worth three times the money as type 3 jobs. It has been suggested that the jobshop operate by priority. The obvious 
scheme is to process waiting type 1 jobs before waiting type 2 jobs, with waiting type 3 jobs to be processed last. Make 
the necessary adjustments to your model for priority job processing. (Use the PUT and GET functions in SIGMA.) 
 
(a) Make 5 runs of 8 hours each with the priority service rule and 5 runs of 8 hours with the current FIFO rule (a total of 

10 one-day runs). Use independent streams for each run and estimate a confidence interval for the difference in total 
income for the day. 

 
(b) Repeat this experiment using common seeds for each pair of runs (with and without the priority rule). Use 

independent seeds for different pairs of runs. Again estimate a confidence interval for the difference in total income 
for the 8 hour day. 

(c) Comment on the differences between parts (a) and (b). What might be wrong with this experiment? Do you 
recommend the priority processing rule? Do you know a better one? 

 
 
 

7.10.11  Motor Vehicles Department  (Mini Simulation Project) 
 

A State Motor Vehicles office has three clerks on duty. The office opens at 10:00 A.M. and closes its doors at 5:00 P.M. 
Customers already inside the office after closing are served. Between the hours of 10 and 12 (noon), walk-in customers 
arrive according to a Poisson process at a rate of λ (t-10) customers per minute, where t denotes time in hours. Between 
the hours of 12 and 13 (i.e., over the noon hour), customers arrive at a constant rate of 2λ . Finally, between times 13 
(1:00 P.M.) and 17 (5:00 P.M.), the arrival rate is λ (17 - t)/2. 
 Clerks process customers according to a uniform distribution between 0.5 and 2 minutes per customer. 
Occasionally a customer will call on the telephone and one of the clerks will take the call (possibly interrupting service for 
a customer). The time between phone calls is distributed as an exponential random variable with a mean of 5 minutes. It 
typically takes half the time to serve a call as to serve a walk-in customer. Every 20 minutes, one of the clerks is due for a 
ten minute break on a rotating basis (one break per hour for each clerk). 
 
(a) With at most 10 runs of the model give an estimate of the capacity of the system as a function of the demand constant 

λ . Use whatever system performance measures you think are reasonable and justify them. Make and carefully state 
any additional assumptions about the system that you need; be sure to offer some justification for each assumption. A 
run is for a single day of operation. Carefully plan your experiment and give the rationale for your experimental 
design. 

 
(b) As an aid in contract negotiations, consider the effect of adding an additional clerk or cutting the amount of break 

time taken by each clerk.  
 
 
 

There is a plan to add a drive-up window to the office. This window is to be serviced by the same clerks that serve walk-
in customers. Drive-in customers arrive according to the same pattern as the walk-in customers. Drive-in customers will 
balk if there are 3 or more cars waiting for service at the drive-in window. Of these balking drive-in customers, 80% will 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

114 

try to park their cars in the parking lot and walk inside for service. Once a former drive-in customer parks and walks 
inside, s/he will not balk unless the line has more than 10 customers in it. The parking lot has space for 10 cars. Customers 
desiring parking in a full lot will wait only 30 seconds before balking. Assume that it takes between 2 and 3 minutes 
(uniformly) for a customer to travel from the lot to the office and vice versa (including time to park). 
 Enrich you simulation to include the possible drive-in window. Use the your model to advise the State as to what 
they should do (hire more clerks?, build the drive-up window?, increase the size of the parking lot?, etc.). 
 
 
 
 
 

7.10.12  A Turnpike Gas Station 
 

A toll road gas station has 2 pumps in tandem but only 1 access lane. Cars arrive only from the left at intervals that are 
spaced T minutes apart. Pumping gas and paying takes P minutes. If both pumps in a lane are free when a customer 
arrives, the customer will use the "down stream" pump. A car at pump 1 cannot pass a car at the pump in front of it even if 
it has finished. 

 
 
 

 
 
 
 
 

(a) What are the resident entities in this system? What are their attributes? What are the transient entities and their 
attributes? Describe, in words, the resident entity cycles and transient entity path(s). List any additional assumptions 
you are making about this system? Give an event graph model for the resident entities in this system. At a minimum, 
your graph could be used to measure the utilization of each pump. 

 
 
 

(b) Create a SIGMA model of the turnpike gas station. Modify the problem so that if there are four or more cars in line 
when a customer arrives, the customer will go on to another station. Run you model until 20 cars have been served 
and analyze the queue size and utilization of each pump (charts, numbers, intuition, etc.). Start the system empty. 
Assume that car interarrival times are uniformly distributed between 1 and 5 minutes and service times are between 1 
and 7 minutes. 

 
 
 
 

7.10.13  A Turnpike Gas Station (continued) (Mini Simulation Project) 
 
 

Enrich the preceding turnpike gas station model to include two access lanes, one on either side of the pumps. Potential 
customers arrive from the right at intervals that are randomly spaced. Assume that customer interarrival times are 
uniformly distributed between 2 and 6 minutes when coming from the left and uniformly spaced between 2 and 4 minutes 
when coming from the right. Service times are between 3 and 5 minutes at each pump. 
 

(a) Customers cannot pass cars in front of them even if they have finished. Each pump can pump to only one car at a 
time in either lane and cars cannot drive around to change lanes. If there are more than four cars waiting in a lane, 
customers arriving from that direction will not stop. Draw an event graph of this system that can be used to study the 
resident entities (pumps and queues). Carefully justify your event graph model; do not just tell what you did and how, 
include why! 

 
(b) Create a SIGMA model of your graph and print the English translation (*.ENG) and the event graph for your model. 

Run your model and discuss the output (what kinds of questions can you answer with your model?). 
 

(c) Using the PUT and GET functions, collect waiting time data for customers in each lane. Present and discuss histograms 
and time plots of the waiting time data. 

 

(d) Using event parameters, tell us how you would enrich your model to include several service 
islands. 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

115 

(e) Consider two service options: "full" service where service times are between 3.5 and 4.5 minutes at each pump and 
"self" service where service times are uniformly between 1 and 7 minutes at each pump. If both pumps are free when 
a customer arrives, that customer will use the "down stream" pump only half the time unless there is a "full" service 
attendant on duty. Create a SIGMA model of this system that can be used to study these two alternatives. Run your 
model under each alternative for 1 simulated hour. Write up your experiment and recommendations in less than five 
pages. How much can you afford to pay the extra attendant needed for the full service option (in terms of profit from 
lost sales)? 

 
 

7.10.14  Parts Assembly 
 

In an assembly operation, machines A, B, and C make parts that are joined together by machine D. It takes 3 parts from 
machine A, 2 parts from B, and 1 part from C for each assembly operation at machine D. All processing times have 
exponential (Erlang{1}) distributions. The mean processing times are input to the simulation as parameters of the first 
vertex. Build a simulation model of this simple assembly operation. Run your model for 10 complete assembly operations 
where the mean processing times for machines A, B, C, and D are 0.1, 0.2, 0.3, and 0.4. Which machine appears to be 
the bottleneck machine in this operation? What if the machine D's processing time were reduced to 0.05 minutes? 
Translate your model to C or Pascal and run it until 1000 assemblies are finished. Does your bottleneck machine change 
once the system has warmed up? 
 

7.10.15  The Texas Ferry Service (Mini Simulation Project) 
 
 

Along the Texas Coast, an east-west four-lane highway was built to promote the tourist trade to the Padre Islands. 
Unfortunately, this highway must cross a wide channel used by large oil tankers. Providing free automobile ferry service 
is considered to be an alternative to building a bridge. There is room for up to 6 loading/unloading berths on each side of 
the channel. Whenever a tanker comes through the channel, the ferries have to wait until it passes. Evaluate the ferry 
option. Do a sensitivity analysis to various levels of demand. (How much can we spend on a bridge? How bad can it be?) 
Hint: Consider modeling aggregate arrival processes; e.g, ferry-loads/hour for the different size ferries. 
 Relevant data is as follows: Each berth costs $2,500,000 to build. There are three sizes of ferries that can use the 
berths: 
 

Type 0 holds 25 cars and costs $1,500,000, 
Type 1 holds 50 cars and costs $3,250,000, 
Type 2 holds 100 cars and costs $5,500,000. 

 

 On Friday afternoons during a two-hour peak period, it is estimated that cars will arrive roughly according to a 
Poisson process with a rate of 20 per minute from the east (Corpus Christi toward the Padre Islands). The time between 
arrivals is thus 20*ERL{1}. On Sunday afternoon over a four-hour period, roughly the same number of cars will return to 
Corpus Christi. At other times (during the tourist season) traffic in both directions is expected to arrive at a rate of about 6 
cars per minute. 
 The ferries take between 12 and 18 minutes to cross the channel (depending on the tides). Tankers come by 
according to a Poisson process at a rate of 1 every half-hour, and it takes 8 minutes for a tanker to pass the ferry lanes. 
Cars can be loaded onto a ferry at a rate of 3 per minute and unloaded at a rate of 5 per minute. 
 Note: They decided to use ferries instead of build the bridge. Five berths on each side were built and 6 medium-
sized ferries operate during the peak periods. Do you think this was a good decision? What factors, in addition to cost, 
might have guided their decision? 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

116 

 
8 
 

Building Animations 
 
 
Animations created with SIGMA are fundamentally different from those using other simulation animation software. Most 
simulation modeling environments have a separate program for the simulation and an add-on program that does the 
animation; in SIGMA the simulation and the animation are identical. The event graph model becomes the animation. 
Animating a SIGMA model is extremely simple; you are limited only by your imagination and the speed and memory of 
your computer. In the tutorial that follows, we will develop a simple animation, use it to find an error in our model, and 
then fix the error. 
 
8.1 Perspective and Basic Principles 
 
Animations are one of the more entertaining aspects of simulation modeling. However, it is important to keep them in 
perspective. Animations are most useful during model development and testing. Their main strength is in helping to find 
gross logic errors in a model. Once a model is developed and experiments are being run, animations have almost no 
practical value. Output plots and spreadsheet statistics are the major tools for analysis. Finally, after a study is completed 
and different systems are being demonstrated, animations once again become very useful.  
 While animations are useful verification and demonstration techniques, there are some disadvantages to keep in 
mind. Animations have little analytical value. Modifying a system based on the experiences of a few minutes or even 
hours of animated operations is not wise. Even as a demonstration, the time spent by managers watching even the most 
carefully crafted animation is typically just a few minutes. The requirements for an animation will almost always force 
you to develop a more cumbersome model than necessary, with many details that are added simply to support the 
animation. Take, for example, a system with 100 machines processing thousands of parts an hour. We can simulate this 
system with an event graph having only three or four vertices. If one hundred machines are added, the model does not 
change To animate the system, a different representation will be needed for each machine. This is true regardless of the 
particular simulation software your are using. However, it is easy to add the detail necessary for an animation to an event 
graph by connecting additional subgraphs. 
 Animating a SIGMA model is simple. The balls that represent event vertices are replaced by two types of 
pictures: one image appears when the vertex executes, and the other appears when the vertex is inactive. These two 
pictures are in the form of bitmaps that are selected from the Edit Vertex dialog box by clicking on the Active Picture 
or Inactive Picture buttons. For fancy animations, the pictures can be actual scanned photographs; they can also be 
simple drawings created by a drawing program. In our tutorial, we will use pictures created with Windows Paint.  
 Each individual picture used in SIGMA cannot be larger than 64,000 bytes; however, you can use as many 
pictures as your computer's memory or version of SIGMA will allow. Hint: If you are creating pictures using Windows 
Paint, limit the picture sizes to less than two or three inches square using the Image/Attributes menu item. Save the 
picture as a 16 color bitmaps or monochrome bitmap (which are good for sequencing video files) using the Save As 
option.  
 The fancier the pictures, the more impressive the animation will be. However, remember that others will 
probably not spend more than a few minutes looking at your animation. You can use an inexpensive digital camera to take 
the pictures for your simulation (of course, crop the pictures so that the bitmaps are less than 64,000 bytes in size). 
 
8.2 Classes of Animated Objects 
 
To get started, it will be helpful if we think of the physical entities in a system as belonging to one of three classes:  
 
1. Static resident entities (such as halls and windows in a building): These entities do not change their appearance when 

the state of the system changes during a simulation run. 
 
2. Dynamic resident entities (such as machines): These entities may change their appearance when the state of the 

system changes, but they remain at the same location. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

117 

3. Transient entities (such as parts, customers, and cars): These entities may change their appearance and location while 
the simulation is running. 

 
The three classes of physical entities are represented by different combinations of active and inactive pictures. For static 
resident entities, the active and inactive pictures are identical.  
 Dynamic resident entities typically will have different active and inactive pictures; the active 
picture represents a transitional state, and the inactive picture represents the state immediately after 
the vertex executes. Furthermore, a dynamic resident entity will often have several vertices stacked 
(or "grouped") on top of each other so that the picture of the current state of the entity is showing. 
You can think of the inactive pictures for the grouped vertices associated with a dynamic resident 
entity as the frames of a video of the entity and the active pictures as transitions between these 
video frames that smooth out the motion. 
 Transient entities will have an active picture that is a representation of the entity and a inactive picture that is 
blank. Some of the vertices in our original event graph might trigger some movement of a transient entity. For example, in 
our carwash model, the ENTER event might trigger a dirty car to enter the carwash and a LEAVE event might trigger a clean 
car to move away from the carwash. This movement is represented by a string of vertices along the transient entity path of 
motion triggered by the event. For example Figure 8.1 shows our original carwash model with a string of vertices attached 
to the ENTER and LEAVE events.  
 
Figure 8.1: Strings of Vertices added to ENTER and LEAVE Events of CARWASH.MOD.Cars 
Entering and Leaving Facility. 
 

 

 
 
 
 
 When the active pictures are represented by clean and dirty cars and the inactive pictures are represented by 
blank pictures the size of the cars, the result will be like Figure 8.2. (The Select All button in the Edit menu was pressed 
to show all the animation elements.) 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

118 

 
 
 
 
Figure 8.2:   Strings of Vertices added with Active Pictures Showing; represents Cars Entering and 

Leaving the Carwash Facility. 
 

 
 

 
 These paths of motion are very easy to create. Simply use the Create Single Edge tool to create the first 
vertex in the string. Edit the active picture for the new vertex to be a bitmap of the transient entity and the inactive picture 
to be a blank bitmap the same size as the transient entity. Now select the Create Process tool and click a string of 
vertices that can later be moved along the desired path of motion. (The string of vertices will have the previous pictures as 
defaults.)  
 Bitmaps of the proper size are easily created using the Windows Paint utility and sized using the Attributes 
command in the Image menu. Clipping scanned photographs of the transient entity will make the animation look more 
like a video movie. 
 The delay times on the edges between these transient entity motion vertices can be set to represent actual move 
times, including acceleration and deceleration. The Time Steps run default mode along with a TIMER vertex should help 
make the motion smoother. (A "timer" is a self-scheduling vertex with an edge delay time of one time unit.). If you have a 
slow computer, you might change some of the edges between the transient entity motion vertices to be pre-emptive edges 
(delay=*). However, have no more than four or five pre-emptive edges execute in a sequence. If there are more than five 
in a sequence, increase your Windows stack to avoid a stack overflow. 
 The three types of entities are summarized in Table 8.1. 

 
 

Table 8.1:  Physical Entity and Picture Representations for Animations 

 
Physical Entity Active Picture or Inactive Picture "Groups" of Stacked Vertices 

Dynamic Resident Entity Transition/ Ending State Yes 
Static Resident Entity Same Pictures for both No 

Transient Entity Picture/blank No 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

119 

8.3 Tutorial: Animating Resident Entities 
 
We will animate a simulation model from the SIGMA directory, BRKDN.MOD. This model represents a single machine, 
with periodic failures, that processes parts that arrive at random times. We will use each of the three basic types of 
animated objects discussed earlier, beginning with resident entities. The event graph for BRKDN.MOD is shown in Figure 
8.3. Follow along on your computer as we animate this model.  

Figure 8.3:  Event Graph of BRKDN.MOD 
 

 
 
 

Start a SIGMA session. 
 

Open the model, BRKDN.MOD. 
 

 To represent the states of the queue (a dynamic resident entity), we will use a subgraph on your SIGMA 
directory called, QSIZE.MOD. You should minimize the current SIGMA window and open a separate SIGMA session 
from the Windows Start menu. Read QSIZE.MOD into this new SIGMA session. The event graph should look like Figure 
8.4. 
 
 

Click the Minimize button on the BRKDN.MOD SIGMA session.  
 

Return to the Start Menu and open  a second  session. 
 

Click the Open/Event Graph command under the File menu, locate QSIZE.MOD, and double-click on it.  
 
 

 In QSIZE.MOD, simple active and inactive pictures drawn with the Windows Paint utility represent the different 
states of a queue. Vertices represent 0, 1, 2, 3, and >3 customers in the queue. The variable, QSIZE, represents the current 
size of the queue. If you explore QSIZE.MOD a bit, you will notice that vertex 0 has QSIZE passed to it as a parameter. 
Also note that the values of QSIZE are tested on each of the edges to see which picture is appropriate. Click on the 
vertices and edges to see how QSIZE.MOD works. It is very simple and serves no purpose other than animation. Do not 
"save" QSIZE.MOD if you mess it up, but rather "read" it into your SIGMA session again. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

120 

Figure 8.4:  Event Graph for QSIZE.MOD, with Inactive Pictures Showing 
 

 
 
 The next step will be to copy QSIZE.MOD and paste it into your other SIGMA session with the model 
BRKDN.MOD.  
 

For QSIZE.MOD, click the Select All command under the File menu. 
 

Click the Copy command under the Edit menu. 
 

Click the Minimize button on the QSIZE.MOD simulation window. 
 

Activate the BRKDN.MOD SIGMA session. 
 

Press the Paste command under the Edit menu for BRKDN.MOD. 
 

Figure 8.5:  BRKANAM1.MOD After Pasting QSIZE.MOD into BRKDN.MOD 
 

 
 

 Hold the mouse button down on one of the newly copied vertices of QSIZE.MOD and drag the entire subgraph off 
to the side. (You might have to re-select these vertices by holding [Shift] and clicking on them before you can drag the 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

121 

selected subgraph out of the way.) If your screen looks something like Figure 8.5, the transfer was successful, and you can 
close the SIGMA session with QSIZE.MOD. The model in Figure 8.5 is called BRKANAM1.MOD in your SIGMA directory. 

 
With the QSIZE.MOD subgraph still highlighted, drag it off to the side of BRKDN.MOD. 
 
Click the Minimize button on the BRKDN.MOD event graph. 
 
Close the QSIZE.MOD SIGMA session. 
 
Re-open BRKDN.MOD. 

 
 Now we will simply wire the new QSIZE.MOD subgraph into our model by drawing two edges: One edge from 
the ENTER event to the 0 vertex of QSIZE.MOD and the other edge from the START event to the 0 vertex of QSIZE.MOD. 
These two edges should pass the attribute value of QUEUE (into the QSIZE parameter of vertex 0) to let the subgraph know 
the current number of parts in the system. The delay time for these edges should be an asterisk (delay = *), meaning pre-
emptive execution, and they should be unconditional (Condition: 1 == 1). This model is BRKANAM2. Next, select all of 
the vertices in the QSIZE.MOD subgraph and stack them on top of each other. 
 

Click on the Create Single Edge tool. 
 
Create an edge from the ENTER vertex of BRKDN.MOD to Vertex 0 of the QSIZE.MOD subgraph. 
 
Create another edge from the START vertex of BRKDN.MOD to Vertex 0 of the QSIZE.MOD subgraph. 
 
Click on the Select or Edit tool. 
 
Double-click on each new edge; edit each dialog box so the delay time is *. 
 
Highlight the QSIZE.MOD subgraph by lassoing the vertices or pressing [Shift] and clicking the mouse. 
 
Click the Group Vertices command under the Edit menu. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

122 

Table 8.2:  The Assignment of Bitmaps to Active and Inactive Pictures for BRKANAM3.MOD 

 

 

 
 Now we will assign pictures to the other vertices according to Table 8.2. Note that the static resident entity of the 
track is represented by the RUN vertex and has the same active and inactive pictures. The ENTER vertex represents the 
transient entity of a part entering the system;  it has a blank bitmap for its inactive picture. The four vertices (START, 
LEAVE, FAIL, and FIX) represent various events for the machine, which is a dynamic resident entity. These vertices have 
transitional bitmaps as their active pictures; their inactive pictures represent the state of the machine immediately after the 
event occurs. The resulting model is BRKANAM3.MOD in your SIGMA directory. 
 

Double-click on the RUN vertex to open the Edit Vertex dialog box. 
 
Press the Inactive Picture button to open a dialog box with a list of bitmaps. 
 
Scroll through the list until TRACK.BMP is located; double-click on it. 
 
Press the Active Picture button, locate TRACK.BMP, and double-click on it. 
 
Press the OK button at the bottom of the dialog box. 
 
Repeat this process with all the vertices, using the active and inactive pictures specified in Table 8.2. 
 

 

 Next, we will group the four vertices that represent the various states of the machine (START, LEAVE, FAIL, and 
FIX) into one machine, and then we will combine the objects on the screen. The animation, BRKANAM4.MOD, looks 
something like Figure 8.6. 

Vertex Representing Type of Entity Active Bitmap Inactive Bitmap 

Run A Section of Track Static Resident TRACK.BMP TRACK.BMP 

Enter A Customer Transient Entity CUSTOMER.BMP BLANK.BMP 

Start Machine Working 
(Yellow) 

Dynamic Resident START.BMP BUSY.BMP 

Leave Machine Available 
(Green) 

Dynamic Resident LEAVE.BMP IDLE.BMP 

Fail Machine Broken (Red) Dynamic Resident FAIL.BMP BROKEN.BMP 

Fix Machine Available 
(Green) 

Dynamic Resident FIX.BMP IDLE.BMP 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

123 

Figure 8.6:  Event Graph for BRKANAM4.MOD, A Resident Entity Animation of BRKDN.MOD 
 

 
 
 

 
Highlight the START, LEAVE, FIX, and FAIL vertices using [Shift] and the mouse. 

 
Click on the Group Vertices command under the Edit menu. 
 
Click on the Select All command under the Edit menu. 
 
Next, click the Hide Selected Edges command also under the Edit menu. 

 
Drag the objects to locations similar to that in Figure 8.6. 
 

 You should load BRKANAM4.MOD and run it to see what happens. The simulation has become the animation. An 
add-on animation program would add an unnecessary layer of software between you and your model. Try clicking on 
some of the objects in BRKANAM4.MOD; you can Ungroup Vertices and Show All Edges using the commands under 
the Edit menu. You can double-click on vertices or edges and change their behaviors. 

A final note about dynamic resident entities: in some cases it may be necessary to offset some of the pictures in a 
group representing a dynamic resident entity. For example, we may want to have a robot arm sticking out the side of a 
machine. The robot arm is part of the resident entity representing the states of the machine (the arm would be represented 
by a vertex that is grouped with the other machine state vertices). However, it has a blank inactive picture so that the arm 
would appear to retract. The arm is moved off to the side of the rest of the vertices in this group by slowly clicking on the 
group (so that it is not interpreted as a double click) until the arm appears. It is moved to the side, down, or up using the 
arrow keys. The other vertices in the group remain in their previous positions. Using the arrow keys to move a single 
vertex in a group can also give a sense of realism in animations of living things. (See SIGMA model, TOUCAN.MOD, where 
the body of the bird was moved slightly using the arrow keys to make it appear to "wiggle.") Moving only one of the 
vertices in a group with the arrow keys is a powerful animation technique. The saved model has vertex groups listed at the 
bottom of the file. This shows the group members with their "offsets" from the center of the group. 
 You will soon notice that the animated model, BRKANAM4.MOD, is a bit dull. This is because we have not yet 
added transient entities to our animation. It is the transient entities that move across the screen and bring our animations to 
life.  
 
8.4 Tutorial Continuation: Animating Transient Entity Motion. 
 
Adding transient entity motion is quite simple in SIGMA. As discussed earlier, you simply attach a string of vertices to an 
event that will represent the path of motion of the transient entity when the event occurs. The active picture for transient 
entity vertices is a picture of the entity. Here a simple colored bitmap of a bar is used to represent the part moving to and 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

124 

from the machine. Transient entities have a blank inactive picture the same size as their active picture. The active picture 
flashes at the current location of the transient entity. This picture is then blanked out when the transient entity moves on. 
The vertices in such a string will typically have no state changes associated with them and are connected with an 
unconditional edge with pre-emptive execution (delay = *). Figure 8.7 illustrates adding a transient entity leaving the 
machine after the LEAVE event. (The Select All command was clicked to show the active pictures of the new vertices.) 
 
 

Figure 8.7:  Adding a String of Vertices to Represent Movement of a Transient Entity  
 
 

 
 

 
 
IMPORTANT:  Do not connect more than four or five vertices in a row with edges that have a delay of *. Insert an 
edge with zero delay to avoid a stack overflow condition. 
 

Open BRKANAM4.MOD or continue with the model you have been developing. 
 
Click once on the group of vertices represented by the box. This will be the starting point for the path followed by 
a transient entity. 
 
Since the starting point of the transient entity must be a vertex, click the Ungroup Vertices command under 
the Edit menu to ungroup these vertices.  
 
Click the right button to get into Create Process mode; click the left mouse button on the location of the first 
point of the transient entity path. 
 
Note that the vertex you create will be a duplicate of the last vertex created when building the model. 
 
After getting into Select or Edit Mod, double click on this new vertex. 
 
Assign CUSTOMER.BMP to the Active Picture and BLANK.BMP to the Inactive Picture. Press the OK button  
in the dialog box to incorporate the new images into the event graph. 
 
Check if this is successful by clicking on a blank space; the transient entity image should disappear.  
 
Click again under the number of the new vertex; the transient entity image should reappear. 
 
Click on the right button to get into Create Process mode. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

125 

Click several times along the path to be followed by the transient entity. (All you should see are the edges of the 
transient entity path.) 
 
Press the right button to get into Select or Edit mode. 
 
Click on the Select All command under the Edit menu. 
 
Click on the Hide Selected Edges command under the Edit menu. 
 
Click on any blank space to deselect the vertices: All the transient entities should disappear, leaving just the 
numbers of each break-point in the path. 
 
When you run the simulation, the numbers at the break-point vertices along the transient entity path will 
disappear. 
 
HINT: Put a very high execution priority (low number) on each edges along the transient entity path if you want 
the transient entity to complete its movement before any other vertex executes. 
 
Highlight the ungrouped boxes, and group them again. 
Press the Start Run tool to see the transient entity path in motion. 

 
A string of vertices was added to the ENTER event to show the part entering and to the FAIL event to show a part 

being discarded. The model is BRKANAM5.MOD in your SIGMA directory and is shown in Figure 8.8. Again, the Select 
All option was clicked to show all parts of the animation. 

 
 
Figure 8.8:  BRKANAM5.MOD with Strings of Vertices Representing Transient Entity Paths Added. 

 

 
 
 
 You should load and run BRKANAM5.MOD and observe how it works. The local display variables, INPUT, GOOD, 
and BAD were added to the model, in addition to QSIZE, to show where each part went. 
 With the animation, it is rather easy to see that there is an error in the model; the count of discarded bad parts is 
increased even if the machine fails when it is not working. Since what goes into the system must go somewhere, the 
following equation should hold: 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

126 

 
INPUT = GOOD + BAD + QSIZE + SERVER. 

 
 Increasing the number of BAD parts discarded even if the machine failed when empty will cause this balance 
equation to be invalid. Adding a vertex to indicate if the machine fails when empty or loaded solves this problem. (See 
BRKANAM6.MOD) Note that a puff of smoke is added when the machine fails, using the same technique for adding transient 
entities.).  

Other examples of animations have been included with SIGMA, including one with the ubiquitous carwash, 
ACARWASH.MOD. Also see SIMAN.MOD for an animation of a process-oriented simulation language. ROBOT.MOD, in Figure 
8.9, is an actual animation of a loading robot used in semiconductor manufacturing. The model represents an automated 
robot that processes wafers in vacuum chambers. Wafers enter the system at Station 1, are processed individually at 
Station 2, are moved to either Station 3 or Station 4 for batch processing, and then leave the system through Station 5.  
 
 

Figure 8.9:  An Animation Of  Priority Loader Robot (Cluster Tool) 
 

 
 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

127 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

128 

 
 

 
9 
 

Modeling Input Processes 
 

Discrete event simulations are typically both dynamic (they change over time) and stochastic (they are random). So far, 
we have concentrated on learning to model the dynamics of a system. In this chapter, we look at some of the issues and 
techniques for modeling randomness. Random numbers, trace-driven simulations, parametric input distributions, and 
empirical input distributions are discussed. The exponential autoregressive process is used to illustrate dependence in the 
input process. Various sources of data with which to model input processes are presented.  A discussion on reusing 
random number seeds to reduce variance in model output is also included. The chapter closes with some techniques for 
generating random variates, including the generation of non-homogeneous Poisson processes. These processes are useful 
models for generating exogenous events to drive a simulation model. 
 
9.1 Randomness 
 

Although there is much literature in this area, here we will be brief. This is partly due to the fact that simulation modelers 
rarely write code for this part of their programs. Algorithms for imitating random sampling are well developed, and 
reliable codes are readily available. Furthermore, while the dynamics of most simulation models are unique, the stochastic 
logic tends to be the same. Almost all of the simulations we have discussed have had at least one random process as an 
input to the model. For instance, our carwash model was driven by customers arriving at randomly spaced intervals. We 
modeled the car arrival process by assuming that the intervals between arrivals were independent and had a particular 
uniform probability distribution. Realistic situations can be quite a bit more complicated: cars might arrive at a higher rate 
during rush hour, on weekends, or on days with nice weather. In this chapter we will review some of the considerations 
and techniques for generating random input processes to drive a simulation. 
 Broadly speaking, there are three popular approaches to modeling input processes: using pre-recorded data, using 
sample probability distributions, and using mathematical probability models. Pre-recorded data is also called a process 
"trace", a sample probability distribution is also called an "empirical" distribution, and mathematical probability models 
are sometimes referred to as theoretical or "parametric" models. All but trace-driven simulations require the use of 
random numbers. 
 
9.2 Trace Driven Simulations 
 

In a trace-driven simulation whenever a value for a random variable is needed by the simulation, it is read from a data file. 
When it is practical, this input file contains actual historical records. In our carwash example, the trace might be a file of 
the intervals between successive car arrivals recorded while watching the system. Sometimes only a portion of the input is 
trace driven. In a fire department simulation, the times and locations of calls might be read from a file with data from a 
dispatcher's log book while other inputs, such as equipment repair status and travel times, might be generated as they are 
needed. 
 Trace data is simple to read into SIGMA using the DISK{} function. Recall that the DISK function has two 
arguments. The first argument is the full name of the data file (with drive and directory path if necessary); the second is an 
integer index telling which entry is to be read. When the index is zero, the file is read sequentially, wrapping around to 
start at the beginning again when the end of the file is reached. 
 We could place the values (separated by at least one space) of times between customer arrivals at our carwash in 
a data file called ARRIVAL.DAT. We then could use the function, DISK{ARRIVAL.DAT;0}, as the delay time on the self-
scheduling edge for the ENTER vertex that generates successive customers arrivals. If ARRIVAL.DAT contains only five 
observations and looks like the following 
 
 

.32    2.6 

.78    4.3  .85, 
 
 

then the sequence read by the DISK{ARRIVAL.DAT;0}would be 
 
 

.32, 2.6, .78, 4.3, .85, .32 (wrapped around) 2.6, ... 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

129 

 

 There are some distinct advantages to having the values of random processes read from a data file. Foremost, 
there is less concern with the validity of the trace input data than when the inputs are artificially generated. We never 
really know how individual input variables might actually be distributed. Furthermore, it is quite difficult to capture the 
dependencies between different input processes or between successive values of the same input process. (We will re-
examine the question of dependent input later in this chapter.) 
 When attempting to validate that a model accurately represents the behavior of a real system, there is probably 
no better test than to simulate previous system behavior using past input data. All discrepancies between the performance 
of the model and the system can then be attributed to model assumptions or errors in the simulation code. Assumptions 
and code errors are only dangerous if they are hidden. Assumptions can be evaluated as to their potential impact on 
decisions and the benefits they offer in model simplification. Known coding errors can be corrected. Accurate 
representation of the past is a reasonable minimal expectation. However, just because your model closely imitates last 
year's performance with last year's input data by no means makes the model correct or even useful. Driving a simulation 
with an artificial data trace rather than historical data is a useful technique for debugging the logic of a model. Specific 
sequences of otherwise random events can be forced to reoccur in a model that is being tested or enriched. 
 Many of the disadvantages of trace driven simulations are more or less obvious; some are not. While historical 
data traces provide a valuable source of simulation input when developing or changing a model, traces are not a good 
general approach to driving a simulation model when it is being used for analysis. Trace driven simulations require 
storage space for the data buffers, or they can be very slow due to the significant overhead of reading input files. 
Historical data that is detailed enough to drive a simulation is probably not available and would be time-consuming and 
expensive to collect. Actual data is also subject to errors in observation or may be invalid merely due to the intrusion of 
the observer. Even if detailed data is readily available, the simulation still could not be independently replicated or run for 
a longer period than the interval for which actual data was collected. In using trace input, we are giving up two of the 
major advantages to simulation modeling: time compression and independent replication. 
 Using a historical data trace as input when considering alternative policies or designs is probably not valid. Most 
trace driven simulations are closed systems. That is, the laws governing the input processes are not dependent on the state 
of the simulation. On the other hand, the actual system most likely is an open system that influences its environment. 
Although they are run all the time, trace-driven, "what if" simulation experiments are usually not appropriate. All 
statements about the effect of a change are based on the implicit assumption that the change has no influence on the 
environment in which the system operates. This is analogous to assuming that a system operates in an inelastic economy; 
demand is not altered by supply, price, quality, etc. What we most likely want to know is how sensitive the new system 
might be to changes in the input. It is difficult to do input sensitivity analysis with trace input. 
 Another disadvantage concerns rare but important events (i.e., a single, very long repair time at a service center). 
Since an unusual event is, by definition, unlikely to be on any given historical data trace, we may never see its influence 
in our simulation runs. Perhaps worse, if such a rare event happens to be in our trace, it will occur in every system we 
simulate. We might choose an alternative that handles this unusual case well but is too expensive or does not perform well 
in more typical situations. 
 
9.3 Random Number Generators 
 
At the heart of stochastic modeling are random numbers. We define random numbers as positive fractions whose values 
are assumed to be independent of each other and equally likely to occur anywhere between zero and one. Random number 
generators are algorithms that imitate the sampling of random numbers. In SIGMA, RND has its values generated by such 
an algorithm. The algorithm simply takes an integer that you supply as the "seed" and recursively multiplies it by a fixed 
constant, divides by another constant, and uses the remainder as the next "seed." This remainder is also scaled to lie 
strictly between zero and one and used as the current value for RND. The random number generator we are using 
originated with Lewis, Goodman, and Miller (1969). 
 We will forego a discussion of the philosophy of random number generation. Suffice it to say that, by most 
common notions of what we mean by randomness, it is impossible to "generate" random numbers. Indeed, there have 
been some widely used algorithms that generate numbers that look far from random. Perhaps with the exception of the 
seed you give it, there is nothing whatsoever truly random in the values of RND or the outputs from any other random 
number generator; they just "look" random if you are not overly particular. Any random number generator that has passed 
all statistical tests for randomness simply has not been tested enough. Nevertheless, modeling the output from many 
random number generators as being true random numbers has been amazingly successful. 
 It is very easy to modify the SIGMA-generated source code in C to include multiple random number input 
streams. This is discussed when we introduce correlation induction techniques used in variance reduction in Section 9.8. 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

130 

9.4 Using Empirical Input Distributions 
 
With this approach to input modeling, a sample of observations of an input variable is used to estimate an empirical 
probability distribution for the population from which the sample was taken. The customary estimate of the empirical 
probability distribution is to assign equal probability to each of the observed values in the sample. If the sample contains 
N observations, then the empirical probability distribution will assign a weight of 1/N to each of these observations. 
 Suppose that a trace of interarrival times of customers to our carwash is in the data file ARRIVALS.DAT. 
Sampling from the empirical distribution is equivalent to reading a randomly chosen value from this file. This is like 
shuffling and drawing from a data trace. In SIGMA this is done by making the index of the DISK function a random 
integer from 1 to N. For example, the file, ARRIVALS.DAT, may look like the following: 
 

.3   .42   .2   .54   .79 
 

A delay time of DISK{ARRIVAL.DAT;1+5*RND} will result in one of these five numbers (chosen at random) being used. 
Wrapping around the data file will not occur here since the index is never greater than 5. A considerably more efficient 
but perhaps less flexible approach is to place the data in an array and generate the index of the array uniformly. If the data 
is in the array, X, then X[1+5*RND] would select one of these values with equal probability. In SIGMA the index is 
automatically rounded down to the nearest integer. 
 Similar to using historical data traces as input, the big advantage to using sample distributions to generate input 
is that there is less concern over validity. However, with sample distributions we can replicate and compress time. The 
disadvantages to using the empirical input distributions are similar to the disadvantages to using trace input: the data 
might not be valid, sensitivity analysis to changes in the input process is difficult, we cannot generalize the results to other 
systems, and it is hard to model rare events. The one major advantage trace input has over empirical distribution sampling 
comes in modeling dependencies in the input processes. The trace will capture these dependencies whereas the empirical 
distributions will not. 
 
9.5 Using Parametric Input Distributions 
 
Efficient algorithms have been developed for imitating the sampling from a large number of parametric families of 
probability models. In Chapter 7, we saw some SIGMA functions for artificially generating samples that behave very 
much as though they were actually drawn from specific parametric distributions. 
 The values of parameters for these models determine the particular characteristics of the sample. This ability to 
easily change the nature of the input by changing a few parameter values is the primary advantage of using these models 
to drive a simulation. The variate generation algorithms in common use are fast and require very little memory. 
Furthermore, you can easily run replications, compress time, and generalize the results to other systems having the same 
structure. The major drawback to using parametric input distributions is that they can be difficult to explain and justify to 
people who have no background in probability and statistics. 
 Devroye (1986) provides a very complete reference on variate generation algorithms. The article by Leemis 
(1986) catalogs the relationships between dozens of probability laws.  
 There are several obvious classifications of probability models: finite or infinite range, continuous or discrete 
values. On a practical level we can also classify probability models as primarily providing good models for input 
processes or good models for output statistics. 
 Most of the common distributions that are used to model output statistics  are derived from the normal (also 
called the Gaussian) distribution. In SIGMA the function NOR{M;S} will imitate sampling from a normally distributed 
population with a mean of M and a standard deviation of S. M can be any real-valued expression, and S can be any positive 
real-valued expression. Samples from other distributions such as the t, F, and χ-square can easily be derived from their 
relationship to the standard normal distribution (Leemis, 1986). A selection of parametric distributions that are good for 
input modeling are provided as SIGMA functions.  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

131 

Figure 9.1: Standard  Beta Density shapesfx(x) = Γ(p+q)/(Γ(p)Γ(q)) x p-1(1-x)q-1

First Parameter (p)

S
ec

on
d 

sh
ap

e 
pa

ra
m

et
er

 (q
)

(p=.5,q=.5) (p=1,q=.5) (p=2,q=.5) (p=3,q=.5)

(p=.5,q=1)

(p=.5,q=2)

(p=.5,q=3)

(p=1,q=1) (p=2,q=1) (p=3,q=1)

(p=3,q=2)

(p=3,q=3)

(p=2,q=2)(p=1,q=2)

(p=1,q=3) (p=2,q=3)

 
 
 The function BET{P;Q} imitates sampling from a beta random variate with parameters given by the positive real-
valued expressions P and Q. This is a standard beta on the interval from 0 to 1 and can be scaled to the interval (C,C+D) in 
the usual way as C+D*BET{P;Q}. The beta distribution is one of the most useful in simulation input modeling because of 
the richness of shapes it can take with simple changes of its two parameters. Figure 9.1 provides a convenient "matrix" of 
beta distribution shapes for various values of its parameters. 
 ERL{M} will give a sample imitating an M-Erlang random variate. The parameter, M, can be any positive integer-
valued expression. Multiplication by a real number, A, will move the mean from M to A*M. Since the M-Erlang is the sum 
of M independent exponentially distributed random variates with mean 1, A*ERL{1} will be an exponential random variate 
with mean, A. 
 If you want a sample that is even more highly skewed than one having an exponential, the function, GAM{A}, will 
imitate sampling from a gamma distribution with a fractional parameter. Here the shape parameter, A, is a real variable 
strictly between 0 and 1. The result can be multiplied by a scale parameter to give a variety of distribution shapes. For 
integer values of M, M-Erlang random variates have the same distribution as gamma variates. 
 The function, TRI{C}, will imitate sampling from a triangular shaped distribution over the range from 0 to 1. The 
mode (peak) of the distribution is at the value of the real-valued expression, C, which is between 0 and 1 inclusive. The 
linear function, 
 

A+(B-A)*TRI{(D-A)/(B-A)} 
 
imitates a sample from a triangular distribution between A and B with a mode at D. 
 It is easy to code other probability models with SIGMA. We will illustrate this with two very useful models, the 
multinomial and the lambda. The multinomial probability law models independent sampling, with replacement, where 
there are only K possible mutually-exclusive outcomes. The simplest example of multinomial sampling is drawing a 
numbered ball from a jar where after each sample the chosen ball is placed back in the jar. While there are more efficient 
algorithms available, multinomial sampling is easily done in SIGMA using the DISK function. To illustrate, suppose that 
there are only three possible outcomes from our experiment. We will see a 1 with a probability of 1/2, a 2 with a 
probability of 1/3, and a 3 with a probability of 1/6. We simply set up a data file called, MULTINOM.DAT, which has the 
following entries 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

132 

 
1  1  1  2  2  3   

 
The statement X = DISK{MULTINOM.DAT;1+6*RND} will assign the values of X with the given probabilities. The index 
of the above DISK function is a randomly chosen integer from 1 to 6 (rounding the index down is automatic). 
 The lambda (more properly the "generalized" lambda) distribution is like the beta in that it can take on a wide 
variety of shapes. This distribution is discussed by Ramberg, et al. (1979). The major difference between the lambda and 
the beta is that the lambda can take on an infinite range of values whereas the beta is restricted to take on values only 
within a specified interval. There are four parameters to the lambda that can be estimated using subjective data. 
Generation of a lambda variate is very easy. Suppose that you have defined real-valued state variables, X and R, along 
with the four lambda parameters, L1, L2, L3, and L4. The statements R=RND, X=L1+(R^L3-(1-R)^L4)/L2 will give 
values of X that imitate sampling from the lambda. 
 You should exercise caution when using Erlang, exponential, gamma, lambda, and normal distributions for input 
modeling. Variates from these families can take on very large values. You need to check and/or control for 
reasonableness. For instance, if you are using an exponential (ERL{1}) variate to model the service time at a store, it is not 
reasonable for the service time to exceed some upper limit. No one is going to wait years for service. Truncating these 
distributions at some upper bound is advised. To illustrate, a vertex with the state changes, 
 

X=ERL{1}, 
X=X*(X<5) 

 
would produce a sample from an exponential variate truncated to be strictly less than 5. The truncated probability (the 
likelihood that an exponential variate exceeds 5) is added to the probability of zero occurring.  
 
9.6 Modeling Dependent Input 
 
The book by Johnson (1987) along with the articles by Lewis (1981) and McKenzie (1985) are devoted primarily to the 
generation of dependent input processes. To illustrate the critical importance of recognizing and modeling dependence in 
the input processes for a simulation, we will use a simple process called the exponential autoregressive (EAR) process 
(Lewis, 1981). 
 Successive values of an EAR process, X, with mean, M, and correlation parameter, R, are generated from the 
recursion 
 

X = R*X+M*ERL{1}*(RND>R) 
 
with an initial value of X given by the exponential M*ERL{1}. The values of this process will have an exponential 
distribution, but they are not independent. The correlation between two values of an EAR process that are K observations 
apart is Rk. At the extremes when R=1, the Boolean variable (RND>R) is always equal to zero and the above expression 
reduces to X=X. The process never changes value, so the serial correlation is a perfect 1. When R=0, (RND>R) is always 
equal to 1, and independent (zero correlation) exponential random variables are generated as X=M*ERL{1}. The EAR 
process is easy to use since its serial dependency can be controlled with the single parameter, R. Although histograms of 
the values of this process look like a simple exponentially distributed sample, the line plots of successive values of an EAR 
process look rather strange. As is obvious from the EAR process equation, the value of X takes large randomly-spaced 
jumps and then decreases for a while. 
 To see the effects of dependent input, consider our simple queueing model, CARWASH.MOD, where we change 
service times. We will use an EAR process, with mean, M, and a correlation parameter of R. This model is called 
EAR_Q.MOD. If you run EAR_Q.MOD with the same M but very different values of R, you will see a radical difference in the 
output series. Dependence in the service times has made the two systems behave very differently. When building this 
model, if we had looked only at the histograms of service times and ignored the serial dependence on service times, we 
might have had a very poor model. 
 
9.7 Sources of Data 
 
One of the most common excuses given for not successfully completing a simulation study is the lack of "real-world" data 
with which to model the input processes. While real data is valuable in establishing the credibility of a simulation, lack of 
data is not a good excuse for not proceeding with the study. You should be trying a wide range of reasonable input 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

133 

processes to assess system performance sensitivity to changes in the environment. Furthermore, there are many sources of 
data that should not be overlooked when planning and conducting a simulation study. Each source of data has different 
associated costs, risks, and benefits.  
 At the least detailed level, there are physical constraints of the system being modeled, such as space limitations 
for a waiting line. This is reliable, low-cost information that gives design insight. It tells a great deal about the rationale 
for the way a system was designed. Unfortunately, it is static information and is of little help in modeling the system 
dynamics. At the next level of detail, there are the subjective opinions of persons involved with the system. This is low-
cost (but unreliable), static data that provides behavioral insights about the people involved with designing, operating, and 
managing the system. Increasingly detailed information can be obtained from aggregate reports on system operations such 
as labor, production, and scrap reports. This is low-cost, verifiable, static data that can provide performance insight. 
Information that is useful in modeling the dynamics of the system can sometimes be obtained from artificial data, classical 
Industrial Engineering MTM methodology. This type of information can give standard times (with allowances for fatigue) 
for performing different manual operations in a system. The cost of this information is moderate, and you do not need to 
have access to the actual system to obtain it. However, its validity depends on the skill and experience of the person doing 
the analysis. This data uses detailed motion analysis and provides policy insights in how the system managers and 
designers intend people to perform their jobs. Finally, the most expensive source of data is direct observation. The validity 
of this data depends on the skill of the observer and the relationship between the observer and the person being observed. 
Direct observations of a system's operations might be collected manually with time studies or mechanically with sensors. 
This data provides the operational insights needed to accurately model system dynamics. 
 Alternate sources of information are sometimes overlooked. For example, part routing sheets can be used to 
verify traced job flows in a factory. Production records might be used to augment and validate data on the reliability of 
machines. Knowing the number of machine cycles in a particular time period from production records along with the total 
number of failures from maintenance records permit you to estimate the probability that a machine will fail on a given 
operation cycle. It is unlikely that these failures are independent; however, at least you have a starting place for your 
sensitivity analysis and a potential consistency check for verifying more detailed machine failure testing data.  
 When deciding on what types and how much data are needed for a simulation, sensitivity analysis is of great 
value. Change the values of an input parameter to your simulation. If the measured system output does not change 
significantly, you do not need a better estimate of that parameter. On the other hand, if the output is highly sensitive to 
variations in a particular input parameter, you had best devote some effort to estimating the true value or range of that 
parameter. Sensitivity is only one key factor in determining a need for more information about an input process. The other 
is the degree of control that you might have over the process. If the process is essentially beyond your control, detailed 
data collection of the current behavior of the process is probably not worthwhile. For example, customer arrivals at your 
carwash are not under your direct control. Knowing a great deal about the current demand is not critical. Hopefully, the 
demand for your carwash will increase dramatically from its present level once the improvements from your simulation 
study are implemented. You should run any prospective design against both high and low demand. 
 Finally, one needs to be alert for communication problems when collecting data. You might think that the data is 
about one thing when it is really about another. Or the data might have been translated, scaled, or simply recorded 
incorrectly. Fortunately, these are not fatal problems in carefully conducted simulation studies. We are going to change 
the input data during our sensitivity analysis experiments anyway.  
 To help keep the relative importance of real-word data in perspective it may be useful to remember the following 
Five Dastardly D's of Data. Data can be: 
 
1. Distorted: The values of some observations may be changed or not consistently defined. For examples, travel 
times may include loading and unloading times, which would tend to overestimate the value of a faster vehicle, or a 
product demand data may include only backlogged orders, ignoring customers who refused to wait. 

 
2. Dated: The data may be relevant to a system that has or will be changed. Perhaps factory data was collected for 
an older process or using last year's product mix. 

 
3. Deleted: Observations may be missing from the data set. This might be because the data was collected over an 
interval of time, and events such as machine failures simply did not occur during the study period. Medical trial data 
might be censored by patients dropping out of the study for various and unknown reasons. 

 
4. Dependent: Data may be summarized (i.e., only daily averages are reported). This may remove critical cycles or 
other trends in a data sequence or hide relationships between different sequences. For example, data from a surgical unit 
might give very accurate estimates of the distributions of preparation, operation, and recovery times. However, it may 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

134 

fail to capture the fact that some procedures will tend to have large values for all three times while others procedures 
may tend to have all small values. 

 
5 Deceptive: Any of the first four data problems might be intentional. 

 
9.8 Variance Reduction 
 
It is often possible to obtain significantly better results by using the same random number streams for different simulation 
runs. For example, you might want to compare the performance of two different systems. When doing so, it is a good 
general experimental technique to make "paired" runs of each system under the same conditions. In simulations you do 
this by using the same random number seed in a run of each system. This technique, called using common random 
numbers, extends to more than two alternative systems, You would re-use the same seed for a run of each system. To 
replicate, choose another seed and run each system again. This technique reduces the variance of estimated differences 
between the systems. 
 Another example where re-using random number seeds can help reduce the variance of the output applies when 
making two runs of the same system. As before, you use the same seeds for both runs in the pair. However, for the second 
run, use 1-RND where RND was used before. If RND is a random number, then 1-RND is also. Furthermore, there is a perfect 
negative correlation between RND and 1-RND. If RND is a small random number, 1-RND will be large; if RND is large, 1-
RND will be small. The pair of runs using RND and 1-RND are called antithetic replications. The hope is that the negative 
correlation between the input streams will carry over to the output. If one run produces an output that is unusually high, its 
antithetic run will have an output that is unusually low. When the antithetic replicates are averaged, a run with an 
unusually high result is canceled by its antithetic replicate having an unusually low outcome and vice versa. 
 Re-using random number seeds falls under the general category of variance reduction techniques. For a 
discussion of common and antithetic random numbers as well as some other techniques (which tend to be much less 
successful in practice), see the text by Bratley, Fox, and Schrage (1987). 
 The chances that the beneficial results of correlated input streams carry over to the output are greater if the runs 
can be synchronized as much as possible. That is to say, we want any unusual sequence of random numbers in a run also 
to be used in the same manner in its commonly seeded replicate(s). For example, if one run in a queueing simulation has 
an unusual sequence of long service times that causes the system to become very congested, we would like its antithetic 
replicate to have an unusual sequence of short service times that reduces congestion in the system. We would like all 
systems using common random numbers to have the same experiences. Synchronization of runs is generally improved if 
we use different random number streams exclusively for different stochastic components of our simulation. For example, 
in a queue we might use one stream to generate interarrival times and another stream to generate service times. Thus, we 
will want to use more than one sequence of random numbers in our simulation. A detailed example is in Appendix B.18.  
 
9.9 Using Multiple Random Number Streams (Development licensees only – others see Appendix B) 
 
Function definitions in C make it very easy to change your SIGMA random number stream to a "vector" of random 
number streams. We discuss how to generate C simulation programs in Chapter 11. In your SIGMA-generated C code, 
replace RND with RND[I], where I is an integer indicating which stream you want to use. For example, to draw a random 
number from stream 3, replace RND with RND[3]. Then "vectorize" your library functions by replacing rndsd with 
rndsd[i] and RND with RND(I) in SIGMALIB.C (for development licensees only) Note that RND is now a function and 
rndsd becomes an array. If you are using three different random number streams in your model, you would make two 
changes in the library header file for your C compiler (SIGMALIB.H, SIGMAFNS.H). The two replacement lines would be: 
 
 
long rndsd[3];  /*makes rndsd a vector*/ 
#define RND(j) ((float) (rndsd[j] = lcg(rndsd[j]))*4.656612875e-10) 
 
Like before, you still would have to read in the seeds for each stream when you run your model. You can always 
substitute the random number generator that comes with your compiler for RND. Appendix B.18 gives a general approach. 
 
9.10 Methods for Generating Random Variates 
 
In this section, techniques for generating random variates are presented. Included among the techniques is the generation 
of non-homogeneous Poisson processes. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

135 

9.10.1  Distribution Function Inversion 
 
The cumulative distribution function, F xX ( ) , for the random variable, X , is the probability that the value of a random 
variable will be less than or equal to the function argument, 
 

F x X xX ( ) { }= ≤Prob . 
 
Discrete valued random variables can be generated by partitioning the interval between zero and one into sections whose 
widths are equal to the probability of each value. The value of the random variable is determined by the interval in which 
a pseudo-random number, U, falls. The probability of U falling in an interval is equal to the width of the interval, which, 
in turn, is the probability of the corresponding value occurring. This is equivalent to inverting the cumulative distribution 
function as illustrated in Figure 9.2. 

 
 

Figure 9.2:  The Cumulative Distribution Function of a Discrete Random Variable 
 

Value of X

0

1

1 2 3 4 5

U

Prob{X=2}

Prob{X=1}

Prob{X=3}

Prob{X=4}

Prob{X=5}

 
 
 

The same technique can be applied to continuous valued random variables. For example, the cumulative distribution for 
an exponential random variable is, 
 

y F x e
F x y

X
x

X

= = −

⇒ = − ∗ −

−

−

( )
( ) ).

/1
ln(1

µ

µ1
 

 
So, the inverse distribution function of a uniform random number will generate an exponential variate as 
 

X F U U UX= = − ∗ − ≈ − ∗−1( ) ) ).µ µln(1 ln(  
 
When the cumulative distribution function is easily inverted, this technique is recommended. Unfortunately, not very 
many of the more commonly used probability distributions have easily inverted cumulative distribution functions. 
Exceptions that are particularly useful are order statistics from a sample of uniform random variables. 
 
Order Statistics: Order statistics are sorted samples; the minimum order statistic is the smallest value in a sample. 
Suppose we want to know the first time that one of several identical independent components will fail. We could generate 
the lifetimes of each component and sort them to find the shortest. If there are many components, it would be easier to 
generate the minimum order statistic from the lifetime distribution.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

136 

 Order statistics can be generated by evaluating an inverse cumulative distribution function at the corresponding 
uniform order statistic. The ith smallest of K uniform random variables has a beta distribution with parameters i and K-
i+1. A common special case is where we want the smallest of K independent values of a random variable. The cumulative 
distribution function of the smallest of K independent uniform random variables is, 
 

F xX ( ) =Prob{smallest of K independent Uniforms ≤ x} 
 
= 1-Prob{smallest of K Uniforms > x}= 1-Prob{all K Uniforms > x} 
 

=1 (1− − x)K  
 
Therefore, 
 

F UX
− = − −1( ) 1 (1 U )1/ K . 

 
If the lifetime of each of K independent components has an exponential distribution, the distribution of the time until the 
first component fails is equal to 
 
 

 
9.10.2  Other Methods 
 
Other methods for generating random variates include acceptance/rejection, composition, and special relationships. Like 
inversion, these other methods are not always possible to use in their pure form, and special algorithms that combine these 
methods have been invented. The reference by Devroye (1986) contains many of these algorithms. 
 Acceptance/rejection involves bounding the probability density and generating a point uniformly within this 
bounding area. If the generated point falls below the density function, the horizontal value of the generated point is used 
as the random variate. If the point falls outside the density function, the generated point is rejected and a new point is 
tried. This is continued until an accepted point that falls within the region under the density function is found. This is 
analogous to throwing uniform points onto the bounding region and accepting those points that fall below the probability 
density. The algorithm for generating beta variates, beta_fn, in the SIGMA C library uses an acceptance/rejection 
algorithm due to Cheng (1978). 
 Composition involves breaking the probability distribution into regions from which it is relatively easy to 
generate variates. One of these regions is selected with the probability in that region and the variate is generated from that 
region.  
 Special properties exploit relationships between different types of random variables. Some commonly used 
relationships include generating an Erlang variate as a sum of exponentials, generating a geometric variate as the integer 
part of an exponential, generating a chi-square variate as the sum of squared normal variates, and generating a Poisson as 
the count of exponential variates whose sum falls within an interval. (When the Poisson rate is large, there are better 
methods for generating Poisson variates given in the references). 
 
9.10.3  Generating Non-Homogeneous Poisson Processes 
 
Random arrivals to a service system can often be modeled using a Poisson process. This process has proven to be a rather 
good model for many processes that occur naturally. It is also used for other types of exogenous events that drive a 
simulation model, such as equipment failures or flaws occurring in a piece of fabric. The parameter for a Poisson process 
is its rate, λ, expressed in the number of events per time unit (e.g., customer-arrivals/hour or flaws/square-foot).  
 There are numerous methods for generating Poisson processes which exploit different properties of these 
processes. The fact that the times between Poisson events have exponential distributions can be used to simply make the 
delay time for a self- scheduling edge have an exponential distribution with a mean equal to the inverse of the Poisson 
rate. For example, if the arrivals to a queue are going to be modeled as a Poisson process with an rate equal to RATE, then 

})1ln{(

))1(1(1ln(

/1

/1

K

K

U

UX

−∗−=

−−−∗−=

µ

µ



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

137 

the edge delay time for the self-scheduling edge that models sequential arrivals would have a delay time of 
(1.0/RATE)*ERL{1} (recall that Erlang-1 and exponential distributions are same).  
 If we know the total number of Poisson events that occur in an interval of time, we can better match the process 
by conditioning on this knowledge. We do this using the fact that the distribution of the times of K Poisson events in an 
interval have the same distribution as K uniform random numbers on the same interval. Say we know that K Poisson 
events occurred in an interval between 0 and T . We can generate the minimum order statistic of K uniforms over the 
interval for our first event time, T1. The second event time will be the minimum of the remaining K-1 uniforms distributed 
over the remaining interval between T1 and T . The rest of the K events in the original interval can be generated in this 
manner.  
 Unfortunately, processes in the real world do not often occur with a constant rate. The arrival rate may be 
relatively high during a rush hour and slack (or zero) late at night. A Poisson process with a changing rate is called a non-
homogeneous Poisson process. An easy way to model a non-homogeneous Poisson process is by a technique called 
"thinning" (Lewis and Shedler, 1979). Here we simply generate Poisson events at the maximum rate and keep them with a 
probability proportional to the current rate. To illustrate: assume we know that during an 24-hour day, customers will 
arrive at our carwash with the following hourly rates: R[0], R[1],..., R[23] (the rate can be zero if the facility is closed). 
Let RMAX be the maximum of these rates. The event graph to generate Poisson arrival events according to this daily 
demand cycle is called NONPOIS.MOD (it is shown in Figure 9.3. 
 
 

 
Figure 9.3:  Non-Homogeneous Poisson Arrivals to our Carwash Model 

 
 
 

 

RUN START LEAVE ENTER 

{SERVER=1} {QUEUE=QUEUE+1} {SERVER=0, 
 QUEUE=QUEUE-1} 

(SERVER==1) 

(QUEUE>0) 

{SERVER=1} 

MAXR  

= ((1/ RMAX )* ERL {1}) 

( RND  < RATIO) 

(R's, RMAX ) 

{T=MOD{ CLK ;24}, 
RATIO=R[T]/ RMAX } 

 
 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

138 

9.11 Exercises 
 

9.11.1  Chaos 
 

A simple example of a “chaotic system” is the recursive equation: X = R*X*(1-X). 
 

If you start off with a particular value of X, if R is set high enough, it becomes impossible to predict the value of X very far 
into the future. Starting the system with X = 0.2, try values of R = 0.5, 1, 2, and 4. Does the system behave 
differently for different values of R? Does "chaos" describe the behavior? (Do you think chaotic systems might make good 
pseudo-random number generators!) 
 
9.11.2  Generating Discrete Random Variates 
 

(a) Consider the probability distribution function: P(X=i)=i/6    where i =1,2,3 
i. Create an event graph using RND to generate 25 random variates from this distribution. 
ii. Create an event graph using DISK{} and a data file to generate 25 random variates of this distribution. 

b) What is the probability distribution function of X? 
 

U=RND and X=(U>0.2) + (U>0.5) 
 

9.11.3  Generating Continuous Random Variates 
 

(a) Let A and B be two random variables uniformly distributed between 0 and 1. Let X be the larger of A and B. Create 
an event graph which generates 20 values of X (try to be clever). 

(b) Consider the following probability distribution function: f(x) = x/8 0<=x<=4 
 Create an event graph using RND to generate 25 random variates of this distribution.  
 (c) What is the delay time corresponding to an exponential rate with parameter 5? 
 (d) What does the probability distribution function of X look like if X is given by the following?  U=RND  and 

X=(2*RND)*(U <0.5) + (4+RND)*(U>=0.5) 
 

(e) If U is a random variable with a uniform distribution between zero and one, what is the distribution of V=1/2-U/2? 
(f) What will the following state changes do in SIGMA to the value of X? That is, give the value(s) of X and tell how 

the(se) values might occur. [Assume that all variables are REAL valued (i.e., floating point)]. 
 

R=RND 
X=(RND<0.2) + (RND<0.5)*2 + (RND<0.7)*4 

 

g) What does the following SIGMA state change do? 
 

X=(RND>0.5)*1 + (RND<=0.5)*2 
 

9.11.4  Generation of Minimum Statistics 
 

There are 100 identical components operating independently in a system. Each component has a lifetime, X, that has an 
exponential distribution with a mean of 6 days. Generate the time until the first component fails from a single uniform 
random number, RND? (Hint: The minimum of N uniform random variables is given in Section 9.10.1, and X=-M*LN{RND} 
is an exponential random variable with mean, M.) 
 
 

9.11.5  Testing Variate Generators 
 

SIGMA has build-in generators for uniform (RND), gamma (GAM), and normal (NOR) random variates. Using the methods 
in texts referenced in this book (Bratley, Fox, and Schrage and Law and Kelton), perform at least three tests of these 
functions (at least two of the tests should be quantitative). Program and test generators for lambda variates. 
 

9.11.6  A Variance Reduction Technique 
 

Two runs are made of a simulated queue. The random number stream that was used to generate interarrival times in the 
first run is used to generate the service times for the second run. The random number stream that was used to generate 
service times in the first run is used to generate the interarrival times for the second run. Will the average customer 
waiting times from these two runs tend to have zero, positive, or negative correlation? Explain why. 
 

9.11.7  Dependent Processes 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

139 

Run CARWASH.MOD where the interarrival times and service times are exponentially distributed with the same means as 
before but now follow EAR models with lag-one correlation of p = 0.7. Compare this system with CARWASH.MOD having 
deterministic service and CARWASH.MOD having independently distributed exponential service. 
 

9.11.8  A Simple Recursion for Queue Times 
 

Generate 90% confidence intervals for the average waiting time, E[W], in an M/M/1 queue with traffic intensity of 0.9. 
Use the recursion,  W=MAX{W+S-A;0} starting with W=0, where S is the service time of the ith customer (exponential with 
mean =1) and A is the ith customer interarrival time (exponential with mean 1/0.9).  

 

9.11.9  Dependent Input Data 
 

You are building a model for a chain of automatic carwashes. These carwashes have deterministic service rates. A sample 
of car arrivals indicates that the times between car arrivals has an exponential distribution. Unfortunately, the people 
collecting the demand data simply tabulated a histogram of the interarrival times rather than recording the actual sequence 
of arrival times.  
 (a) What problem(s) do you anticipate this might cause in getting a valid model for the customer arrival process? 

Specifically, what information are you missing that you wish you had?  Why? 
 (b) What if you are also told that the lag-1 serial correlation between successive interarrival times is 0.7? Given that an 

arrival event just occurred and the simulated time is CLK, how can you generate the time of the next car arrival (call 
this time T) using all of the information you have? 

 (c) Why might your approach not be acceptable to the people who own this chain of carwashes? 
 

9.11.10  Generating Points in a Plane 
 

Generate a sample of N independent points uniformly scattered over the area in the two-dimensional region in the plane 
bounded by the horizontal axis and an arbitrary function. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

140 

 
10 

 
Graphical & Statistical & Output Analysis 

 
 
In keeping with our philosophy of utilizing pictures whenever possible, several graphical methods of presenting 
simulation results have been incorporated into the SIGMA software. The graphical output charts available to you while in 
SIGMA are line plots, step plots, scatter plots, array plots, histograms, autocorrelations, and standardized time series. This 
chapter discusses these graphical output plots and concludes with an explanation of standardized time series. 
 
10.1 Keeping a Perspective 
 
It is easy to become overwhelmed by the information produced by a simulation model. Different types of simulation 
output are most useful during different stages of a simulation study. Animations, graphs, and statistics all have their 
appropriate roles to play. 
 During the initial development and testing of the simulation model, animating the simulation logic while running 
SIGMA in Single Step or Graphics run mode is the most valuable. The logical animation in SIGMA is different from 
the physical animation of a system. Physical animations are useful in selling the simulation to prospective users and for 
catching gross logic errors in the simulation model. Physical animations using SIGMA are discussed in Chapter 8.  
 The Translate to English feature of SIGMA (found under the File menu) is an extremely effective tool for 
catching program logic errors or communicating the details of a model to persons not familiar with simulation. If the 
SIGMA-generated English description of your simulation is nonsense, it is likely that the logic in your model will not 
make sense either. 
 When evaluating alternative system designs at a high level, charts of the output are most useful. Here we are 
comparing the performance of very different systems (e.g., manual operations versus automated ones). Plots of the output 
not only offer information on overall system performance but also on the dynamics of the system. We can see, for 
example, if the manner in which we initialized the variables in our simulation has an inappropriate influence on the 
output. We will say more about the bias caused by initializing variables later in this chapter. 
 Once a particular design has been tentatively selected, it is important to do detailed sensitivity analysis and 
design optimization before a final recommendation is proposed. Here we are going to run a great many replications with 
different settings of the factors and parameters in our model. It is neither fun nor particularly informative to watch 
hundreds of different animations or look at hundreds of output plots. In the detailed design phase of a simulation study, 
numerical summaries of system performance in the form of output statistics are the most appropriate form of simulation 
output. 
 Finally, once a design has been finalized, the most effective form of output is a physical animation that lets 
people more fully understand the changes being suggested. Charts, statistical summaries, and the English description of 
your model can also be effective in helping you sell your ideas. The above discussion is summarized in Table 10.1. 
 

Table 10.1: Typical Phases of a Simulation Project and Predominant Form of Output. 
 

Phase of the Study Predominant Form of the Output 

Model building and validation Logical animations and English Descriptions 
System evaluation Charts and plots 
Detailed design Statistics 
Implementation Physical animations 

 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

141 

10.2 Elementary Output Charts 
 
The Output Plot dialog box is discussed in detail in Chapter 4. In SIGMA there are five basic output plots and two plots 
for advanced analysis. The basic charts are:  
 

1. Step plots, which show the values of traced variables during a simulation run. 
 

2. Line plots, which are similar to step plots except straight lines are drawn between successive data points. 
 

3. Array plots, which show values of each element in an array. 
 

4. Scatter plots, which show the relationship between pairs of traced output variables. 
 

5. Histograms, which count the relative frequencies that different values of a variable occur. 
 

More advanced output analysis is possible using the following charts: 
 
6. Autocorrelation functions, which shows dependencies in the output. 
 
7. Standardized time series (STS), which can be used to detect trends. 
 

10.2.1 Step and Line Plots 
 

Step plots and line plots (also called index plots) are by far the most common form of graphical simulation output. Here 
we see how one variable changes during the simulation run. The variable of interest is chosen for the vertical axis of the 
plot and an indexing variable is chosen for the horizontal axis. The indexing variable is often simulated time, but other 
variables (such as customer identification number) might be used; the indexing variable should not decrease in value 
during the run for an index plot to make much sense. Figure 10.1 shows a line plot of the queue length in our simulated 
carwash (exponentially distributed service times were used here). 
 

Figure 10.1:  Queue Length as a Function of Customer Number  
 

 

 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

142 

10.2.2  Array Plots 
 
Array plots show the maximum and current values of each element in an array. This looks like a series of "thermometers". 
This is useful, say, when you have an array of queues. You can see how each queue size changes and effects the other 
queues. (See Figure 10.2) A good example is to look at the variable Q in the model, FLOWSHOP.MOD.  

 
Figure 10.2:  Array Plot of Jobs in each Queue in FLOWSHOP.MOD 

 

 
FLOWSHOP.MOD (Array Plot)

Index

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

QUEUE

 
 

 
10.2.3  Scatter Plots 
 
When two variables are of equal importance, they can be chosen as the two axes of a scatter plot. A point is plotted for 
every observed pair of values for these variables. If the points tend to fall along a line with a positive slope, the two 
variables are likely to be positively correlated. (Small values of one variable are observed along with small values of the 
other variable and large with large.) Similarly, if the points in a scatter plot tend to fall along a line with a negative slope, 
negative correlation between the variables should be suspected. Figure 10.3 shows a scatter plot of the waiting time of 
each customer for our simulated bank in Chapter 5 and the number of customers in line when each customer departed; the 
expected positive correlation is evident. 

 
 

Figure 10.3:  Scatter Plot of Waiting Time and Line Length in a Bank 
 

 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

143 

10.2.4  Histograms 
 
Histograms show counts of the number of times the observed values of a variable fall within a specified interval. These 
counts show the relative frequency that values of a variable are observed. Figure 10.4 shows a histogram of the number of 
customers in the carwash model with exponentially distributed interarrival times. 
 

Figure 10.4:  Histogram of Number of Customers in Carwash Queue 
 

 

 
 
 
10.3 Advanced Graphical Analysis 
 
10.3.1  Detecting Trends using Standardized Time Series 
 
Using a standardized time series (STS) plot, it is possible to detect trends in the output that might not otherwise be visible. 
The STS plot should appear to be symmetric about zero if there is no trend in the data (adequate initial truncation). When 
there is a trend, the STS plots will be pulled either above (increasing trend) or below (decreasing trend) the zero line. STS 
can also be used for other types of inference such as confidence interval estimation. The STS plots in SIGMA are the 
unscaled standardized time series for the selected output measurement. The best way to learn how to use STS plots is to 
look at a few simple output series. Try generating a sequence of independent random variables, say, with the one state 
change X=NOR{0;1}. Look at the line plot of the successive values of X and the corresponding STS plot. Now add a 
trend to the data, say, X=CLK*NOR{0;1} and look at the difference in the same two plots. Do this for some more 
interesting and subtle trends (exponential decay, quadratic, sudden shift, etc.) and see how the STS behaves. You will find 
that familiarity with the behaviors of STS plots is a valuable visual tool for output analysis.  
 Standardizing a time series is similar to the familiar procedure of standardizing or normalizing a scalar statistic. 
Standardizing a scalar statistic, such as a sample mean, involves centering the statistic to have a zero mean and scaling its 
magnitude to generic units of measurement called standard deviations. Limit theorems can be applied that give us the 
asymptotic (large sample) probabilistic behavior of correctly standardized statistics under certain hypotheses. This 
limiting model for scalar statistics is typically the standard normal probability distribution. This model can be used for 
statistical inference such as testing hypotheses or constructing confidence intervals. Here we extend this concept to the 
standardization of an entire time series. More information about STS can be found in Section 10.5, Standardized Time 
Series. 
 The value of standardizing time series comes from the fact that the same mathematical analysis can be applied to 
series from a variety of sources. Thus, the technique of standardization serves as a mathematical surrogate for experience 
with the data under study. No matter what the original time series looks like, the standardized time series will be familiar 
if certain hypotheses are correct. An unusual appearance of a standardized time series can be used to conclude that these 
hypotheses are not valid. The statistical significance of these conclusions can be computed in the same manner as with 
standardized scalar statistics.  
 To illustrate using STS plots to detect trends, consider first the STS plot in Figure 10.5. Since this plot is mostly 
negative, a clear downward trend in the data. is evident. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

144 

 
Figure 10.5:  STS Plot Indicating a Downward Trend in the Data 

 

 
 

 
A line plot of the actual data is shown in Figure 10.6, where the downward trend indicated by the STS plot is at best only 
marginally apparent. 

 
Figure 10.6:  Plot of the Raw Data Series for the STS Plot of Figure 10.5 

 

 
 

 Figure 10.7 is an STS plot that indicates the presence of a strong increasing trend in the data. The STS plot is 
pulled in the positive direction by this positive trend in the data. Figure 10.6 should be compared to Figure 10.7, where a 
negative trend was indicated.  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

145 

Figure 10.7:  An STS Plot indicating an Increasing Trend in the Data. 
 

 
 
 

The raw data for the STS plot in Figure 10.7 is plotted in Figure 10.8, where the increasing trend in the data is again only 
slightly detectable. 
 

Figure 10.8:  Raw Data for the STS Plot in Figure 10.7 
 

 
 

 
 The sensitivity of STS plots to trend has a down-side: they can indicate a trend which may disappear as more 
data is collected. However, given the potential seriousness of simulation initialization bias causing an artificial trend in the 
output, it seems better to be able to detect trends easily at the risk of falsely indicating a non-existent trend.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

146 

10.3.2  Dependencies 
 
The autocorrelation function is a plot of the correlation between two observations in the same output series as a function 
of how far apart (lag) the observations are. For example, the lag 1 autocorrelation function is the sample correlation 
between two adjacent output measurements. The autocorrelation function should drop off sharply at a lag of 1 if the 
observations are not correlated. This would indicate that the batch size is large enough to remove correlations between 
successive batched means and initial transient output observations have been truncated. Crude 95% confidence bounds at 
±1 96. n  can be used as a very rough guide (Brockwell and Davis, 1987).   
 The standardized time series (STS) plots can also be used to visually assess whether or not there is significant 
positive serial correlation in an output series. The more jagged the STS plot appears, the less serial dependency in the 
output. If the STS plot is smoother than you are typically used to seeing, you can suspect either a serious trend in the data 
or significant positive serial dependency between successive observations of the output. 
 
10.4. Using Statistics 
 
Batching is where non-overlapping, adjacent, equal-sized groups of data are averaged. The resulting series of batched 
means will often be more independent, less erratic, and have an approximately normal distribution. If there are about 
twenty batches, there is a sufficient number of degrees of freedom for most inferences (Schmeiser, 1983). Batched means 
are computed after truncation. From within SIGMA, you are limited to 10,000 batches of output data. 
 Sufficient statistics and maximum likelihood estimators are used for common inference. The assumptions behind 
the statistics are probably more important than the numbers themselves and should be understood before too much faith is 
placed in their values.  When looking up the simple formulas, you can review the assumptions. Do not let an unfamiliarity 
with statistics prevent you from looking at the charts. Averages of squares (scatter plots) are sufficient for batched means 
confidence interval estimation and other inferences. Approximately twenty to thirty large batches are recommended 
(Schmeiser, 1983). Batching tends to make the output better approximate an independent sample from a normal 
distribution. 
 To illustrate the effects of batching, 1000 observations of the EAR process discussed in Chapter 9 were 
simulated. The mean of the process, µ was 10. The sample mean was 9.43. The autocorrelation function of this process 
and the histogram showed us that this output series does not appear to be independent nor does it have the characteristic 
"bell shaped" distribution function expected of normally distributed observations. We also saw that the correlation 
between the observations appears to slowly decrease as the lag (time interval) between the observations increases. There 
appeared to be significant correlation between neighboring observations at lag 1. The sample standard deviation was 
9.339. (This is approximately equal to the sample mean, as expected from exponential data.) 
 To see the effects of batching, averaged groups of 10 observations in a sample of 5000 from the same process. 
The sample mean of the batched process was  9.739. 
 Even with a batch size as small as 10, we saw from the autocorrelation plot  that the data appears now to have 
very little serial correlation. We also saw that the sample standard deviation is 4.838. The histogram of the batched means  
showed the data is beginning to look like it came from a normal, bell-shaped distribution (as expected from the Central 
Limit Theorem of statistics). With averages of only 10 observations from a highly-skewed dependent exponential 
distribution, we begin to approximate an independent normal data set. The mean and variance of the batched process can 
safely be used to form a batched means confidence interval for the mean of the process, based on the usual t-statistic with 
499 degrees of freedom. (We can use the normal approximation to the t distribution for such a large degrees of freedom 
parameter.) For example, a 90% confidence interval for the process mean, µ, is found to be,  
 

X t S
n

X t S
n

− ≤ ≤ +499 0 95 499 0 95, . , .µ  

 
Substituting our statistics into the above interval estimation formula, we get the following confidence interval 
for the true mean of the process. 
 

9 739 1 645 4 838
500

9 739 1 645 4 838
500

. . . . . .
− ≤ ≤ +µ  

 
9 383 10 09. .≤ ≤µ  

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

147 

The true value of µ = 10 was within this confidence interval, as it was for the wider 90% confidence interval of 9.696 ≤ µ 
≤ 10.763 constructed with 1000 unbatched observations. 
 In addition to averages, time averages, and standard deviations, The STS area, A,  STS{X} can be used for 
confidence intervals as described by Goldsman and Schruben (1984). For large samples, A might behave like the standard 
deviation times a chi-square random variable with 1 degree of freedom independent of the sample mean. (Use 
independently seeded replications to increase the degrees of freedom.) STS is discussed in the next section. 
 The (unscaled) STS maximum, M, located at the Kth of N batches might behave like the standard deviation times 
(N-K)K/N times a chi-square random variable with 3 degrees of freedom if N is very large (and the batch size is 
moderate). See Goldsman and Schruben (1984). This can be used for computing the STS maximum confidence interval 
estimator.  
 
10.5 Standardized Time Series 
 
As a guide to standardizing a time series, we will first review the procedure of standardizing a scalar statistic. We will use 
the familiar t-statistic as an example. The data will consist of n observations 
 

Y Y Yn1 2, ,...,  
 
that are independent and have identical normal distributions. We wish to make inferences about the unknown population 
mean, µ. The average of the data sample  
 

Y
n

Yi
i

n
=

=
∑1

1
 

 

will be the statistic used for these inferences. The population variance, σ2, is an unknown nuisance parameter. 
 

Standardization involves the following steps. 
 

1. Center the Statistic: The population mean, µ, is subtracted from the sample mean giving the random 
variable, Yn − µ , which has an expected value of zero. (Strictly speaking, this difference between the 
average and the mean would not be called a "statistic" since it includes the parameter, µ.) 

 

2. Scale the Statistic Magnitude: Since statistics can come in an almost endless variety of measurement units, 
we will need to express the statistic in a common unit of measurement called a standard deviation. The 

magnitude of the statistic is scaled by dividing by σ2 n . Our statistic is now 
 

σµ−= /)(YnZn  
 

 which is our standardized statistic. Standardized sample means will all have the same first two moments. 
The unknown scaling parameter, σ, can be either estimated or cancelled out of a ratio statistic; the 
cancelling out of this parameter in a ratio statistic is the more common approach and is followed here.  

 

3. Cancel the Scale Parameter: The data is aggregated or batched into b exclusive adjacent groups of size m 
(if necessary, discard data from the front of the run so that b n m= /  ). The average of each batch is 

denoted as Y i m( , ) , i = 1,..., b. The usual unbiased estimator of the variance of the batched means is 
 

∑
=

−
−

=
b

1i

2
nm)(i,

2 )YY(
1)(b

1S  

 

 Inferences about the parameter, µ, are based on the random t-ratio, 
 

SYbT n1b /)( µ−=−  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

148 

4. Apply Limit Theorems: The limiting distribution of Tb−1 is known. As n → ∞  (making m → ∞  since b 
is fixed), the distribution function of ( ) /b S−1 2 2σ converges to that of a χ2 random variable with b 1−  
degrees of freedom. As n → ∞, Yn will converge to the constant  µ  from the law of large numbers. Also, 
from the Central Limit Theorem of statistics, the distribution function of Zb will converge to that of a 
standard normal random variable. Thus, the distribution function of the ratio, Tb−1 (being a continuous 
mapping) will converge to that of a t random variable with b 1−  degrees of freedom. The unknown 
scaling constant, σ, is cancelled out of the ratio. 

 
5. Use the Limiting Probability Model for Inference: The limiting distribution of Tb−1 can be used for 

statistical inference and estimation. 
 

 The concept of standardization can be applied to an entire time series. The original series of 
observations is transformed into a standardized series of observations. We will hypothesize (and test) that the 
series is stationary. We also assume that there is some minimal amount of randomness in the process; however, 
we do not assume that the data is independent. The mathematical assumptions needed are given in a paper by 
Schruben (1983), where it is argued that many simulations on a computer will meet the imposed restrictions for 
applicability. Suppose we want to standardize the output from the ith run of a simulation, with i representing the 
run number. Let  
 

}{ m1,...,j:Y ji, =  
 
denote m stationary but perhaps dependent observations in the ith output time series. We will standardize the 
sequence of cumulative means up to and including the kth observations, given by, 
 

Y k Yi k i j
j

k

, ,( )=
=
∑1

1
 

 
Similar steps to those in standardizing a scalar statistic are followed in standardizing a time series. The steps in 
standardization are as follows: 

 
 

1. Center the Series: For run i, the sequence given by 
 

S k Y Yi m i m i k, , ,( ) = −  

 will have a mean of zero if the series has a constant mean. 
 
 

2. (a) Scale the Series Magnitude: The scaling constant for dependent sequences (independent of the run i) 
that we use is defined as 

 

σ2 =
→∞

lim[ ( )],m
m Yi mVar  

 
 which is just the population variance in the special case of independent identically distributed data. 

Magnitude scaling is done by dividing S ki m, ( )  by σ m k/ . The scaling constant is again unknown but 
will cancel out of our statistics as before. 

 
  There is one additional step required that was not necessary in the scalar standardization case. 
Different time series can be of different length, so we must also scale the length of the series. Thus, we have the 
additional step: 

 
 (b) Scale the Series Index: We will define the continuous index, t k m= / . Our previous index is thus 

given by k mt= . We also add the starting point Si m, ( )0 0=  so that the standardized series is 0 at t = 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

149 

0 and t = 1. The result is that all standardized time series have indices on the unit interval and start and end 
at zero. We now have what we will call a standardized time series given by 

 

T t mt S mt mi m i m, ,( ) ( ) / ( )= σ  
 

 where ⋅  is the greatest integer function. 
 

3. Cancel the Scale Parameter: There are several functions that might be considered for the denominator of 
a ratio that cancels σ.  We will consider here only one such function, the sum or limiting area under the 
function T ti m, ( ). 

 

A
m

T k mi m i m
k

m

, , ( / )=
=

∑σ

1

=
+

−−

=
∑m m j Yi j
j

m3
2

1
21

[ ] ,  

 
4. Apply Limit Theorems: The standardized series, T ti m, ( ), will converge in probability distribution to that 

of a Brownian Bridge stochastic process. Thus, the Brownian Bridge process plays the role in time series 
standardization that the normal random variable played in scalar standardization. An important feature of 
the standardized series, T ti m, ( ), is that it is constructed to be asymptotically independent of the sample 

mean, Yi m, . 
 

  There are several functions of T ti m, ( ) that will also be asymptotically χ2  distributed. The area, 
Ai m, , will have a limiting (as m → ∞ ) normal distribution with zero mean and variance  

 

V = σ2 12/  
 

 Therefore,  
 

A Vi m, /2  
 

 will have a limiting χ2  distribution with one degree of freedom. 
 
  Now consider where each of b independent replications (or b batches of data) are standardized in 

the manner above. We can then add the resulting χ2  random variables, A Vi m, /2 , for each replication or 

batch to obtain a χ2  random variable with b degrees of freedom.  
 

5. Use the Limiting Probability Model for Inference: In a manner similar to the scalar case, the standardized 
(scalar) sample mean of all of the data is divided by the square root of A Vi m, /2 over b to form a ratio 
where the unknown scale parameter, σ , cancels. For large values of m, the distribution of this ratio can be 
accurately modeled as having a t distribution with b degrees of freedom. The resulting (1-α)100% 
asymptotic confidence interval for the mean µ is 

 

µ
α

∈ ±
− =

∑Y t A
b 1 bn i m

i

b

, ,
/( )1

2

12 2

1

1 2  

 

 where Y  is the "grand mean" of all of the data in all batches or replications. More complicated, but 
superior, confidence intervals can be obtained by weighting the standardized time series as in Goldsman 
and Schruben (1990). The SIGMA function STS{X} is equal to Ai m,  for the output time series of values 
of X; this function can be used with the other weightings given in the reference. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

150 

  Also, each of the replication or batch means can be treated as a  scalar random variable and 
standardized and squared, giving another χ2  random variable. Due to the independence of T ti m, ( ) and 

the Yi m, 's, these χ2  random variables can be added, giving a χ2  random variable with 2b-1 degrees of 

freedom. This can be considered as a "pooled" estimator of σ2, which we will denote as Q. The same 
types of inferences can be made for the dependent simulation output series as were applicable in the 
independent data case. The resulting "t variate" is given by 

 

Q/nYT n1b /)( µ−=−  
 
 

 Theoretical properties of confidence intervals formed using standardized time series are presented by Goldsman 
and Schruben (1984), which compares the standardized time series approach to conventional methods. 
 Standardized time series has been implemented in several simulation analysis packages, most notably at IBM 
(Heidelberger and Welch, 1983), Bell Labs (Nozari, 1985), and General Electric (Duersch and Schruben, 1986). These 
packages typically control initialization bias (see also Schruben, Singh, and Tierney, 1983, and Schruben, 1982) and run 
duration as well as produce confidence intervals. Other applications of standardized time series have been to selection and 
ranking problems (Goldsman, 1983) and simulation model validation (Chen and Sargent, 1984). 
 The asymptotic arguments above require that the batch size, m, become large as n is increased. The common 
method is to allow the batch size to grow as the sample size increases and keep the number of batches, b, fixed. Fixing b 
at 10 or 20 seems reasonable in most applications as long as the sample size is large (see Schmeiser, 1983).  
 The limiting probability model of a t random variable has the virtue that it is widely tabulated and has been 
studied extensively. There exist other limiting models that might be used, but none have been developed to the extent of 
the t model.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

151 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

152 

 
11 

 
Generating Source Code for SIGMA Models 

and Running Simulations from a Spread Sheet1 
 
 
One of SIGMA’s most powerful features is its ability to automatically generate source code for a simulation program 
from a graphical model. This chapter discusses the generation of very fast source code in C. Also discussed are ways to 
run large experiments using batch files, how to put your simulator into a spreadsheet and run simulations from a 
spreadsheet interface, how to run large experiments using batch files, and how to replace SIGMA's pseudo-random 
number generator. You do not have to know C to use this feature. If, however, you wish to understand the details, refer to 
Appendix B, which contains suggestions for reading a SIGMA -generated C program. The SIGMALIB.LIB library used 
here currently supports Microsoft Visual C/C++ Version 6.0 (or .NET). 
 
11.1 Generating C Programs from SIGMA Models 
 
SIGMA's ability to generate source code gives you the power and flexibility of using a common language compiler. Of 
course, SIGMA event graph models can be run directly from within SIGMA. Neither a compiler nor knowledge of C is 
needed to use SIGMA. However, SIGMA executes models interpretively (translating code as it goes); this is good for 
interactive model debugging but slow compared to compiled code. In fact, experienced SIGMA users will often rough out 
the logic of a model graphically, translate the model to C source code, and work directly with the generated source code. 
The compiled simulation can also be attached to a spreadsheet interface as discussed later in this chapter.  
 You create C simulations from your SIGMA model simply by clicking your mouse on the Translate command 
under the File menu and selecting C. You are prompted for the name of the file that will contain your C program. A file 
name with the extension ".C" should be entered. The rest is automatic and very fast. SIGMA-generated C models 
typically can be compiled and run without any modification. The library of support functions, SIGMALIB.LIB, is used in 
running these programs. Details of this library of functions are given in Appendix B.  
 Since there is a commonly accepted standard for the C language, your SIGMA-generated C simulation will be 
relatively easy to compile and run on different computer hardware. An introduction to reading C programs is given in 
Appendix B. If you do not know C, you might want to read this appendix now and look at SIGMA-generated C code. 
SIGMA-generated C code is extensively commented and very easy to read. (Comments in C are on lines starting with // or 
bounded between /* and */.) All keywords in C are in lower-case characters. Code that you create in SIGMA that is 
specific to your model will be written using upper-case characters. It is easy to recognize your code that was taken from 
your SIGMA event graph, just look for the upper-case characters. C is a very powerful language, and there are many 
features of C that are not used in creating SIGMA simulations. There are also a few features of SIGMA that do not 
translate easily into standard C code; these also are discussed at the very end of Appendix B. 
 

Important: Code that you created that is specific to your SIGMA simulation will appear in upper-case characters. 
Generic C code is in lower-case. 

 
 SIGMA-generated C models also have been run with the object oriented C++ language. As you become familiar 
with C and C++, it is recommended that you use your skills to streamline and enrich your SIGMA-generated simulation 
programs. SIGMA's intent is to give you a working simulation that is also fast; you can then modify your simulation 
according to your experience and programming skills. Even without modification, SIGMA simulations are often much 
faster than the same simulations written in other popular simulation languages. Learning to use C and C++ will allow you 
to bring a great deal of programming power to your simulations.  
 In addition to vastly improved execution speed, one of the major advantages of translating your SIGMA models 
into C source code is the ability to use data structures and pointers, which are not used in SIGMA. Arrays, pointers, and 
structures are introduced in Appendix B. Structures and pointers are used extensively in the SIGMA and the C.  

 
1  Wai Kin (Victor) Chan developed most of  the material on Visual Basic 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

153 

 
11.2 Compiling SIGMA-generated C code 
 
Two-step Compiling shortcut:  Details for using Microsoft Visual Studio to modify your C code are in Appendix B. 
Using Microsoft Visual C/C++ (Version 6 or .NET), if you replace the file named, MySigmaSimulation.C, in the 
subfolder CompileInCTemplate with your own sigma-generated C code, you can compile it by simply 
 
Step 1. Run the “workspace definition file”, MySigmaSimulation.DSW  
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  Press the F7 function key after MSVC/C++ launches.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then close MSVC and you are done. Your simulation executable will be called MySigmaSimulation.exe, and is 
located in the “debug” subfolder. You can now rename this executable simulation file anything you wish and move it 
anywhere, as long as the name extension remains .exe. Your compiled model can run by simply double clicking on it., 
The MySigmaSimulaton.C file that comes with SIGMA is simply the file, CARWASH.C, that has been renamed 
after being generated from CARWASH.MOD.  A sample experiment file MySigmaSimulation.exp, discussed next, 
is also included in the debug subfolder.  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

154 

 For a concrete example: suppose that we want to run an experiment with our carwash simulation to study the 
effects of the initial run conditions. The only initial conditions in this model are the random number seed, the run 
duration, the initial number of cars waiting when the carwash opens each morning (QUEUE), and the number of bays 
(SERVERS). The simulation, Carwash.exe, was compiled from Carwash.C, which in turn was generated by SIGMA 
from CARWASH.MOD (Carwash.c was renamed MySigmaSimulation.c, compiled using the two step process given earlier and 
MySigmasimulation.exe was then renamed  back to Carwash.exe).  
 
 
 
You run the model by simply double clicking on Carwash.exe and answering several questions at the keyboard, 
responding to the following dialogue: 

 
>[double click carwash.exe] 
Running carwash.exe.  
Looking for experiment file: carwash.exp 
Not found, input data at the keyboard. 
 
OUTPUT FILE (Enter File Name with Path): 
[carwash.xls][Enter] 
 
WARNING: File carwash.xls must NOT be open!! 
 If file does not exit it will be created. 
Do you want new output to be appended to this file? (yes/[no]) 
[y][Enter] 
 
RANDOM NUMBER SEED (Enter Integer Between 1 and 65534): 
[12345][Enter] 
 
STOPPING TIME (Enter number of time units until run termination): 
[100][Enter] 
 
TRACE (1 = Trace Events, 0 = Summary Only) 
[1] [Enter] 
 
Enter initial value for QUEUE: 
[5][Enter] 
 
Enter initial value for SERVERS: 
[2][Enter] 

 
If you are using an unlicensed copy of SIGMA, your run will be allowed to continue after a friendly reminder that non-
educational use is prohibited without a license (). Your output will appear in a new spreadsheet called carwash.xls 
where you can do your analysis. The above process can be automated using Batch files as shown next. 
 
 
11.3 Running Large Experiments using Batch Files 
 
It is easy to use a SIGMA-generated C simulation to make an unattended series of runs with different input settings and 
place the outputs in different output files. This allows you to run large experiments with many different input conditions 
automatically (semi-automatically if you have an unlicensed copy of SIGMA). You can let SIGMA execute the required 
runs while you do something else. Input specification files are sometimes called "experimental frames" and they are 
simple to use. You simply create a text file with one line holding the input responses you would have typed into the 
keyboard for each run in your batch of experiments. We will see how to do this from a spreadsheet in the next Section.  
 The steps for directly running a batch of experiments using a compiled C SIGMA simulation is 
schematically shown as figure 11.1. Any data files and the single experiment control file are written using MS 
Notepad or some other text editor. (Do not use, for example, MS Word to create this file since it will be saved 
on disk using a proprietary format and not in plain text.) These files are read by the simulation executable that 
has been compiled from Sigma-generated C code as discussed earlier. The executable is run inside the MS 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

155 

Command (DOS) prompt. The output files from the simulation runs are typically analyzed using a statistical 
package or spreadsheet, the default output format being for Excel.  
 

 
 
 
 
 
 
 
 
 

figure 11.1: No interface: the user is involved in every step, using different software 
 

 A batch experiment file can be used run your model as many times as desired, producing a separate output file 
for each run, perhaps with different inputs. Each line in this experiment file specifies the input for a single run of the 
simulation. It contains the name of the file where you want the output, the required random seed, stopping time, and 
values for any particular run parameters you require.  An experiment file should be saved with the same name as your 
executable file, but with the *.exe extension replaced by *.exp. Again, you need to use a plain text editor like Notepad 
to write this file. An experiment file for a carwash model with the initial queue length and  number of servers as 
parameters to the RUN vertex would look something like the following: 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REMINDER: Make sure that your *.exp file has the same filename as your *.exe file and that 
both are in the same folder as all of the input data (*.dat) files read by DISK calls in your 
SIGMA model. All input files must be created using a plain text editor like Microsoft Notepad.   

 
In the next section we will see how to build a user interface for you simulation in Microsoft Excel, hiding the messy 
details behind a spreadsheet. If you are using a spreadsheet interface for running your model, you should also make sure 
that it is also in the same folder with your other files. 
 
 Now, suppose we want to make four runs, a full factorial experimental design, consisting of  replications at two 
values for SERVERS of 1 and 2 for QUEUE of 5 and 10. The duration of all runs will be 1000 minutes. We will use 

CARBATCH.EXP: This file will run the model four times with the output files, 
random seeds, stopping times, and trace flags as specified. The initial queue 
length (QUEUE) and number of servers (SERVERS) for each run are in the last 
two columns. The second run gives a full event trace, the others only summary 
output. 
 
 

run1.xls     n       12345        1000        0          10      1  
run2.xls     n       12345        1000        1          10      2  
run3.xls     n       12345        1000        0          10      3   
run4.xls     n       12345        1000        0          10      4 
 

 Path and filename  
for Excel output file 

Random  
 seed 

Compiled
Code

(run exe using 
Command Prompt)

DAT Files
(with notepad)

EXP File
(with notepad)

Output 
Files

(read into 
Excel)

Compiled
Code

(run exe using 
Command Prompt)

DAT Files
(with notepad)

EXP File
(with notepad)

Output 
Files

(read into 
Excel)

 Stopping Time 
 or Event Count 

Append Flag: 
y = Append output 
n = New Output File 
O t t 

 Initial values for 
 the Run parameters  

Trace Flag: 
0 = Summary statistics 
1 = Full event trace 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

156 

common random number seeds for the runs made with each of the four combinations of initial conditions. (See Chapter 9 
on variance reduction techniques for a discussion of commonly seeded replicates.)  
 Rather than repeat the dialogue in Section 11.2 four times, we can create an experiment file with the same name 
as our simulation and the extension .exp instead of .exe. First, we made a copy of the file, CARWASH.EXE and called it 
CARBATCH.EXE. Next, using Windows Notepad, we created an ASCII text file named CARBATCH.EXP with the 
following four lines (one for each run in our experiment). 
 
run1.xls n 12345 1000 1 5 1 
run2.xls n 12345 1000 1 10 1 
run3.xls n 12345 1000 1 5 2 
run4.xls n 12345 1000 1 10 2 
 
The first field is the output file (SIGMA output by default is in Excel spreadsheet format). The next field is n if the output 
file is to be overwritten and y if it is appended. The next field is the random number seed. The next file is the run duration. 
The next field is a flag telling if you want a full event trace (1) or just summary statistics (0). The last two fields are the 
initial values for SERVERS and QUEUE for our four-run factorial experiment.  
 Clicking on CARWASH.EXE will now run the factorial experiment automatically. (Again: If you do not have a 
professional license, you will see an advisory.)   
 
11.4 Running a SIGMA simulation from a Spread Sheet 
 
The direct approach to running experiments just explained given in Section 11.3 is cumbersome and not 
satisfactory if the simulation is to be run by people who would like to use your simulator, but are not really 
interested in the details. A professional, commercial-grade, simulator needs to have an easy-to-use interface. Such an 
interface is relatively simple to create using Excel.  
 What you will produce is an Excel spreadsheet with the distinction of having a “run” button that runs a 
simulation in the background using information from the spreadsheet and producing results that are read back into the 
spreadsheet. The schematic for such an interface is given in Figure 11.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 11.2 Excel interface: the user sees only a dynamic spreadsheet 
 
Here the user only sees their Excel spreadsheet and not the messy details of the simulation experiments, which are hidden 
behind the spreadsheet.  
 You can think of a simulation spreadsheet interface as like any other spreadsheet with the significant difference 
that it is dynamic. That is, the “run” button executes one or more simulators behind the scenes using information from the 
spreadsheet as input. You then update the spreadsheet by displaying the results of the simulation experiments.  
Comparing Figures 11.1 and 11.2 shows the obvious advantages of creating an Excel user interface to run your simulation 
experiments. 
 

 

Compiled
Code

DAT FilesEXP File Output Files

Excel
(User Interface)

(write
s)(write

s)

(write
s)

(reads)

(reads)(reads)

(runs)

Compiled
Code

DAT FilesEXP File Output Files

Excel
(User Interface)

(write
s)(write

s)

(write
s)

(reads)

(reads)(reads)

(runs)



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

157 

11.4.1 A Simple Spreadsheet User Interface. 
 
The spreadsheet interface for your simulation can be as simple or elegant as you desire; however, it must perform three 
essential functions: (1) writing the data files from the spreadsheet for the input to your simulation, (2) running the 
simulation code using these input files, and (3) reading the simulation output files back into Excel for analysis. Our first 
spreadsheet interface will perform these three tasks for our carwash simulator, MySigmaSimulation.exe, compiled from 
the C code, MySigmaSimulation.c translated by SIGMA from the model, carwash.mod. All three tasks will be 
done by simply clicking on a command button called “Simulate”. 
  

 
In the XLDEMO1 subfolder, run the spreadsheet MySigmaSimulation.xls to get acquainted , It runs batch 
experiments for the CARWASH model. 

 
 In section 11.4.2 we will demonstrate how to use “forms” in Visual Basic for Applications (VBA) to create a 
more elegant commercial-quality Excel user interface. 
  

Pressing F1 brings up the help file in Excel if you need terminology defined 
 
 The spreadsheet interface and simulator for this example are included with SIGMA in the sub folder XLDEMO1. 
This spreadsheet will run a batch of experiments as described at the end of Section 11.3 and plot the output. Your own 
experimental file and simulator will be used. If your SIGMA model uses the DISK function for input, you will need to 
create one or more data files that are  created exactly like the experiment file.  
 This spreadsheet interface will be called MySigmaSimulator.xls, and is also included in the XLDEMO1 
folder. This simple spreadsheet has an experimental file, MySigmaSimulation.exp (similar to carbatch.exp in 
Section 11.3 with the number of SERVERS at the carwash varying) with a “Simulate” button for writing the input, 
running the simulation, and reading the output. The minimal interface spreadsheet template is a worksheet called 
MySigmaSimulation.xls and looks like Figure 11.3. Click on MySigmaSimulation.xls to launch this workbook. If 
you are asked whether to enable the Excel macros, select “Enable Macros”  
 

 
For security, make sure the Excel interface is directly from a clean SIGMA folder that has not been modified 
maliciously protected by a virus checker. 
 

 
 

 
 

Figure 11.3 A simple dynamic spreadsheet experimental interface 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

158 

 
The entire table containing the experimental file for this Carwash simulator is named, ExprData. In figure 11.3, this table 
is highlighted and its name appears in the name box.  
 Working with “named cells” in Excel is very important for this example. To name a range of cells, simply do the 
following: highlight the cells first, then select “Insert  Name  Define,” and enter the name of your choice. After you 
define a name, you can use it anywhere inside the workbook.  
 

Select cells first, then define the name.

  
 
 

Enter a name for the selected cells.

  
 

You can find out more details by pressing F1 for help and typing in “name cells” into the Answer Wizard. 
 Before proceeding with adding the “Simulate” button, a little background on Microsoft Office controls and 
Visual Basic for Applications (VBA) code modules is in order. Controls are objects that have properties, such as their 
appearance to the user, and methods, which are actions that are taken when the user does something with a control such as 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

159 

clicking on a button. Controls are created using the control toolbox in Excel and includes the usual MS Windows objects 
(buttons, text boxes, etc.). This first spread sheet interface uses only command buttons to control the basic tasks of 
running the simulation experiments. Command buttons are created by activating the ToolsCustomizeControl 
Toolbox, then selecting the Button control, and finally clicking on your spreadsheet where you want the command button 
to appear (try this).  
 You label command buttons by putting your spreadsheet in “design mode” and right clicking on the button and 
selecting CommandButton Objectedit.  The command button “label” (what the user sees) and the “name” (how Excel 
recognizes the control) can be different as there are in this example.  
 

Design Mode:  When editing controls such as command buttons, it is important to have your spreadsheet in 
“design” mode as opposed to the usual “operating” mode. You put your spreadsheet into design mode by clicking 
on the icon that looks like the one here. Clicking it again puts your spreadsheet back into operational mode.  

 
 
Modules are VBA code that perform general functions such as reading and writing files or running your simulation code. 
These code modules, called subroutines or “subs” for short, are in the modules section of the spreadsheet  
 
 
 

 
To use this example as a template: The VBA code modules in MySigmaSimulation.xls should be copied from 
module1 folder in MySigmaSimulation.xls found in the VBA project explorer (activated by pressing Ctrl-R) and 
pasted into your spreadsheet code module. The code Module is created by using the insertmodule menu 
command in your VBA editor. We will see shortly how to invoke the VBA editor. 
  

 
 
The VBA code modules have comments explaining what the are doing. VBA comments are on lines starting with a single 
quote ( ' ). The details of the VBA code are explained in the next section; however, you can skip the details and merely 
use these functions by copying them into your spreadsheet. Pressing the “Simulate” button performs the three essential 
steps in running a simulation.  
  
Step 1. Write the input files for the simulation runs  from data on the spreadsheet 
With your spreadsheet in design mode, double click on the “Simulate” button and the VBA editor will appear. Look for 
the code that is executed when a user clicks this button.  
 
WriteDataFile "Main", "ExprData", "MySigmaSimulation.exp" 
 
Clicking the button when the spreadsheet is in normal operational model runs the experiment. The generic subroutine 
WriteDataFile has three arguments: (1) the worksheet where the input data is, (2) the name of range for the data table 
on that worksheet, and (3) the output file where this data is to be written. 
 
 Step 2. Run the simulation executable from the spreadsheet 
The next step is the line of code, 
 
RunExe "MySigmaSimulation.exe" 
 
The generic code module, RunExe runs the program called MySigmaSimulation.exe by calling the Visual Basic function 
“shell MySigmaSimlation. vbNormalFocus”. The spreadsheet waits for the run to finish. Then it loads the 
output into the spreadsheet and creates plots. It often takes longer for output to load into Excel then it did to generate it 
with a fast compiled SIGMA simulation executable. 
 
In the next section we will look at code for the WriteDataFile and RunExe code modules in detail. For now it is 
important that you remember the following about this example. 
  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

160 

IMPORTANT 
This spreadsheet runs the CARWASH simulator completely hidden from the user. The danger in doing this is that 
if something goes wrong (say, an input error) the user will never know it – the program just won’t terminate. 
 Hiding execution is done by removing the following two lines in the translated C code (two lines after  // 
experiments terminated) 
     . 
         scanf("%1s",&keytoclose); 
         fflush(stdin); 
 
before the C code was compiled. The shell command was run with the vbHide option instead of vbNormalFocus 
option. Unless you have complete confidence with your simulator, use the vbNormalFocus option with the shell 
command, never vbHide.  

 
 
Step 3. Examine the simulation output  
After the run, the plot from the first run is shown using the code, 
 
Worksheets("Plot1").Activate 
 
The results of all of the experiments (here limited to four) can be viewed by clicking the tabs for the plot worksheets or 
using the command buttons.  
 
 You can use this spreadsheet as a template for your own dynamic spreadsheet simulator once you have used 
SIGMA to write the C code for your model. Your C code needs to be complied using the two-step compiler shortcut in 
Section 11.2 and tested with your own experiment file as discussed at the end of Section 11.3. The only changes necessary 
are for you to name the table for your experiment file, ExprData and make sure you have at least as many blank 
worksheets named “Plot*” for each run in your experiment for the simulation output. If your model needs other input data 
files (say, when your SIGMA model uses the DISK function for additional input, these data files can be written with 
additional calls to the WriteDataFile module with the appropriate file names and ranges before RunExe is executed. 
 
11.4.2 A More Elegant Spreadsheet Interface using VBA 
 
A simple customer service center is used to demonstrate how to build an Excel spreadsheet interface for running 
experiments with a simulation using Visual Basic for Applications (VBA) forms. This interface has all the essential 
features needed for creating a commercial special-purpose dynamic spreadsheet. It can be used as a template for building 
other spreadsheet interfaces for SIGMA-generated simulation executables by copying and pasting code from this example 
into spreadsheet code modules. The source codes for this example are in the XLDEMO2 subfolder that is included with 
SIGMA.  

In this section, we first develop a simple SIGMA model of a customer service center.  We will then go through a 
tutorial on how to use a dynamic spreadsheet interface for running experiments with this service center simulator. We will 
then show how to build the spreadsheet interface using VBA. Visual Basic is an extensive and ever expanding collection 
of objects for Microsoft Office programs. One does not actually “learn” VBA, like one might learn the language C. The 
best most users do is to “get acquainted” with the fundamentals of this language, and searche the VBA help file or the 
web for objects that do what they. Appendix C gives fundamental details of VBA with Excel.  This section introduces 
VBA through the following example.   
 
An Example: a Service Center Simulation 
 
The SIGMA model used for this section is SERVICE.MOD. This model simulates a customer service center that has two 
types of customers, walk-ins and call-ins. The simulation model is designed to examine the effects on the system’s 
performance of having different numbers of agents and phone lines. Beta probability distributions are used here to model 
the customer interarrival and service times; Beta distributions were chosen for their flexibility, but are easily changed (see 
Section 9.5). The agents are cross-trained to handle both walk-in and call-in customers, which are assumed here to take 
identically distributed service times (again, easily changed). Calls that come in when all agents are busy are automatically 
put on hold if any open phone lines are available; otherwise, they get a busy signal. Walk-in customers arriving when all 
agents are busy must wait in a single queue. Whenever an agent finishes service, if there are calls on hold, they will be 
answered before any further waiting walk-in customers are serviced. Giving call-in customers priority over walk-in 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

161 

customers is a common, although very annoying, customer service desk behavior. The details of the simulation model 
follow: 
 
STATE VARIABLE DEFINITIONS 
AGENTS  Number of idle agents   
LINES  Number of open phone lines 
TYPE  Customer type (0=Walkin, 1=Callin)  
QUEUE[TYPE]  Number of customers waiting (TYPE=0=in line, 1=onhold)    
CIAR  Call-in Arrival Rate   
WIAR  Walk-in Arrival Rate 
C,D,P and Q    Range and shape parameters for Beta distributions 
 
EVENT DEFINITIONS 
RUN  Initialize each run in an experiment 
Callin  A call comes into the center 
GetLine A caller seizes an available phone line 
Walkin A walk-in customer arrives 
Start An agent starts service 
Finish  Service finishes 
Hold  A call is placed on hold 
 
 
The event relationship graph for the model is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A verbal description of the model dynamics follows, with at most one sentence for each edge in the graph and the event 
names underlined.  
 
Starting a simulation Run will schedule the first Walkin and first Callin Customer arrivals. Each type of arrival schedules 
subsequent arrivals of the same type with the appropriate random interarrival times. If a Walkin arrival finds an idle agent, 
service will Start without delay. If a Callin customer finds an idle line, it immediately will GetLine, and then be put on 
hold after a 3 second delay. If an agent is available when a call-in customer goes on hold, service Starts without further 
delay. Once service Starts it will Finish after a service time. When a service Finishes, if there are calls waiting on hold, 
they will Start being served, if there are no calls on hold and walk-in customers are waiting, a walk-in customer service 
will Start.  
 
This simulation, SERVICE.MOD, is in the subfolder, XLDEMO2. You can read this model into SIGMA to examine it in 
greater detail and run it a few times. If you do this, note that the number of available LINES (if any) is decremented in the 
GetLine event and not in the Hold event. If LINES were instead decremented in the Hold event, a subtle error would 
occur when two call-in customers arrive less than 3 seconds apart and only one of the LINES is available. Both customers 
would then each schedule a Hold event after 3 second delays. The execution of these two Hold events would cause the 
number of idle LINES to be decreased twice, becoming negative. The rule of thumb illustrated here is to decrement 

Run Walkin

Start Finish

Callin GetLine Hold

RunRun WalkinWalkin

StartStart Finish

Callin GetLineGetLine HoldHold



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

162 

available resource counts immediately when their availability is tested, after a zero-delay top priority edge. (In Chapter 6 
it shows how a delay of * will cause immediate event execution). A typical output plot from this simulation gives the 
number of calls on hold, customers in line, available agents and available phone lines.  

This simulation has been integrated with a spreadsheet to make it easy to run multiple experiments. Here we are 
only running one model from the spreadsheet. In actual applications, many different complex simulations of different 
scenarios can be run from the same spreadsheet interface. A similar interface for a SIGMA model has been used to design 
a call-in center for a major bank with hundreds of agents on duty in different areas of the country with different sets of 
skills and training levels processing tens of thousands of customers a day. That simulation has two run modes (actually 
two different SIGMA models): one to optimize the number of agents in different skill classes and the other to test and 
verify a particular operational and agent scheduling scenario.  
 
11.4.3 Tutorial for using the Service Center Spreadsheet Simulator 
 

The spreadsheet interface used in the previous section was created using Visual Basic for 
Applications (VBA) code. VBA is distributed with Excel. The VBA codes included in the 
XLDEMO2 subdirectory can be used as a template for creating dynamic spreadsheets. Professional 
spreadsheet interfaces for SIGMA models have been developed that are much more sophisticated 
than this one, controlling the execution of several different simulators for different scenarios; 
however, all have the same basic function of writing data and experiment files and calling the 
simulation executable compiled from the automatically generated C code using the VBA “shell” 
command.  

The relationships between different pieces of software (circles) and program types (boxes) 
involved in creating a dynamic spreadsheet are illustrated below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGMA runs a model (*.MOD) file and sometimes reads a data (*.DAT) file using the DISK function 
described in Section 7.2. SIGMA can automatically generate the source code in C (*.C) for the 
simulation that needs to be compiled by MSVC into a simulation executable (*.EXE) to run. The 
simulation executable will read the same data files as SIGMA. The simulation executable can also 
run a batch of experiments defined in an experimental (*.EXP) file. Excel can be used to create a 
spreadsheet (*.XLS) that writes any data and experiment files before calling the simulation 
executable. Details for creating such an interface are given after the service center simulator 
spreadsheet is explained. The Excel interface for this example is composed of three worksheets and 
two forms 
 

MSVC 

Sigma 

Excel 
*.MOD *.MOD 

*.XLS *.XLS 

*.C *.C 

*.DAT *.DAT 

*.EXE *.EXE *.EXP *.EXP 

Sigma 

MSVC 

SIGMA 

*.MOD *.MOD 

*.XLS *.XLS 

*.C *.C 

*.DAT *.DAT 

*.EXE *.EXE *.EXP *.EXP 

Excel 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

163 

 

The Three Worksheets in the Simulator 
To run this dynamic spreadsheet simulator, open service.xls and press the “enable macros” button if asked. There 
are three worksheets in the interface and two forms. We first introduce the worksheets and introduce the forms later.  The 
first worksheet (referred to as  Sheet1) gives a brief introduction to the simulator that looks like the following. 
 

 
 

The interface is designed so that the user can clearly see what information they need to provide by coloring the cells 
yellow where user input data is required. If the input data is missing or incorrect, error messages are given in green 
colored cells.  
 There are two buttons on this introductory worksheet. Clicking the “Run Simulation” button will call the second 
worksheet (Sheet2) from where you can execute the simulation with whatever experimental data is currently on a third 
worksheet (this worksheet is discussed in detail later). Clicking on the “Setup Experiments” button calls this third 
worksheet, an “Experiments” worksheet, which is looks as follows.  
 

EXPERIMENTS

Run  Output File Append Flag RN Seed Run Time Trace Events Walkin Rate Callin Rate Agents Phone Lines
1 Output01.xls n 12345 240.0 1 0.7 0.6 5 4
2 Output02.xls n 12345 240.0 1 0.7 1.0 3 4
3 Output03.xls n 12345 240.0 1 0.7 0.6 3 2
4 Output04.xls n 12345 240.0 1 0.7 1.0 5 2
5 Output05.xls n 12345 240.0 1 1.0 0.6 5 2
6 Output06.xls n 12345 240.0 1 1.0 1.0 3 2
7 Output07.xls n 12345 240.0 1 1.0 0.6 3 4
8 Output08.xls n 12345 240.0 1 1.0 1.0 5 4
9   . blank
10  blank

Edit Experiment and Timing Data Run Simulation Return

 
Each row of the table on this worksheet defines an experiment that is to be run in a batch of 
experiments. If there is any blank space for an experiment, the entire row will be ignored, and an 
error message will appear in the green error space to the right. The information in this table will be 
written to the simulation experiment file, MySigmaSimulation.exp, before 
MySigmaSimulation.exe is executed. Experimental files were discussed in Section 11.3. (The reader 
may or may not recognize that the experimental design being run in this example is called a fractional 
factorial experiment.) This spreadsheet also has a table of data that will be written to a “data” file 
called timing.dat before MySigmaSimulation.exe is run. This data file will be read by a 
DISK function in MySigmaSimulation.exe to determine the shapes and ranges of the 
probability distributions used for the random customer interarrival and service times. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

164 

TIMING DATA

Min Max p q
Interarrival Times 0 1 0.5 0.5

Service Times 0 1 2 3

 
 
After the data are entered, clicking the “Run Simulation” button on the introduction worksheet will bring up the 
Simulation worksheet.  The “Run Simulation” worksheet looks like the following. 
 

RUN SIMULATION

Simulate before Getting Plots. Return to this Window to Close Plots.

Output Plots: Queue[0]=number of customers in line
Queue[1]=number of calls on hold
Agents   =number of idle agents
Lines     =number of open phone lines

Simulate View Plots Experiments Return

 
 
This worksheet has four buttons:  

(1) the “Simulate” button first writes the experiment file, MySigmaSimulation.exp and 
the data file, timing.dat, and then runs the simulator, MySigmaSimulation.exe. 
You should do this to see how it works and make sure your system is set up correctly. You 
will first receive a message reminding that you need to have the some data in the tables in the 
Experiments and Timing Data worksheet before you run the simulator.;  
(2) the View Plots button brings up a form to view and navigate among plots from the latest 
simulation run;  
(3) the Experiments button switches to the Experiment worksheet; and  
(4) the Return button goes back to the “Main” introduction worksheet. 

 

The Two Forms used in the Simulator 
This spreadsheet interface has a form that allows the user to enter the experimental and timing data into the experiment 
and timing worksheets. This form is activated by pressing the “Edit the Experiment and Timing Data” button on the 
experiment worksheet. On the top of the form is the area for specifying the settings of a particular simulation run indexed 
from 1 to 10 by a combo box (drop-down box).  Clicking the Add Experiment button copies the settings into the 
corresponding cells of the Experiment worksheet.  
 The second part of the form includes (1) two options buttons specifying which data distribution (arrivals or 
services) is to be modifed, (2) text boxes for entering timing data manually, and (3) sixteen Beta-distribution pictures for 
the user to select (clicking a picture automatically changes the values of above text boxes to reflect the distribution shape 
selected by the user).  Clicking the Change Timing Data button copies the distribution settings into the corresponding 
cells of the Experiment worksheet.  
 The form looks like the following 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

165 

 
 

The two parameters for the distribution shape are chosen by clicking on a picture of the distribution when the appropriate 
(Interarrival Times or Service Times) radio button is activated. The distribution range (Min and Max) is entered in the text 
boxes here too. The timing data table on the worksheet is not updated until the “Change Timing Data” button is pressed 
and the experiment table  is not updated until the “Add Experiment” is pressed.  
 A second form is activated by pressing the “View Plots” button. This is a simple form that displays the output 
plots from the experiment. The form and resulting output plots look like the following. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the next section, we show how this spreadsheet interface was created using Visual Basic for Applications (VBA). VBA 
fundamentals are reviewed in Appendix C. 
 
11.4.4 Creating the Interface 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

166 

Open the XL-interface by  double clicking on SERVICE.XLS  

  
 

If you are asked whether to enable the XL-interface’s macros, select “Enable Macros” (for security, make sure the XL-
interface has not been modified by others who might have added malicious macros).  
 To see the details on the interface, you should open the Excel tools/options menu dialog  and check the formula 
bar, gridlines, scroll bars, etc. You can take an initial look at this code by opening the VBA editor. In Excel: press the VB 
Editor button   Alternatively: hold the Alt key and press F11 (Alt-F11) to open VBA; hold Ctrl key and press R (Ctrl-R) 
to open project explorer; finally press F4 to view the Properties window. You should see the VBA editor looking 
somewhat like the following depending on your options. 
 

 
 
Perhaps the best way to get acquainted with VBA is to watch code execute in the VBA editor. You 
can do this by setting “breakpoints” in VBA to halt execution of the code at a particular point. To set 
a breakpoint in the VBA editor: double click on an object in the VBA project (say UserForm1) which 
will place the cursor on some code related to a procedure for that object. Press F9 to set a breakpoint.  
 Now, if you go through the above tutorial another time, the code will stop when you hit each 
breakpoint. Press F8 to step through the code or F5 to continue to the next breakpoint. Holding the 
mouse for a short time over a variable name in the VBA editor will cause its current value to be 
displayed. The VBA editor makes it easy to understand the Visual Basic code, so you can copy and 
modify it for your own spreadsheet interface. 
 

The steps taken in creating this dynamic spreadsheet simulator were the following. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

167 

 
Step 1. Create the simulator from the SIGMA model, Service.mod.  
 
Step 2. Layout the worksheets and create navigation buttons 
 
Step 3. Create a form to fill in experimental data. 
 
Step 4. Have the spreadsheet write the simulation input files 
 
Step 5. Enable  the Spreadsheet to execute the Simulator 
 
Step 6. Create a form to display the simulation results after the runs end. 
 
Step 7. Attend to miscellaneous details for a professional-looking simulator including: setting the 
default starting worksheet to the Main worksheet; changing the XL default drive and directory; and 
clearing plots before exiting to save space. 
______________________________________________________________________ 

 
Step 1. Create the simulator from the SIGMA model, Service.mod.  
 
After starting SIGMA, open the model service.mod included in the C:\Sigma\XLDEMO2 folder. From the Sigma 
window, select “File  Translate  C...” to translate Service.mod to C code and name it Service.c. 
 

 

 
 
 
Save the translated Service.c to the folder “C:\Sigma\XLDEMO2”. If your default directory is different, simply 
save the C file to your directory and keep in mind that whenever the following appears “C:\Sigma\XLDEMO2”, it 
should be changed to your default directory. 

 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

168 

 
 
Go to the Excel demo folder located in your SIGMA folder, by default, it is under “C:\Sigma\XLDEMO2”.  Double 
clickint on “MySigmaSimulation.dsw” will open Microsoft Visual C/C++ (VC) version 6 or later.  Note: If you 
double click on MySigmaSimulation.dsw and a VC workspace does not open, this means all the files with a “.dsw” 
extension in your computer are not associated with the VC program.  In this case, start VC directly from the Start menu 
and open “MySigmaSimulation.dsw” from VC. 
 

 

 
 

The workspace in VC you opened by clicking MySigmaSimulation.dsw should look as 
follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Press F7 to compile and build a new executable, which will be saved automatically as “MySigmaSimulation.exe” 
under the “C:\Sigma\XLDEMO2\Debug” folder.  You will need to copy this new executable from the debug subfolder 
up to the “C:\Sigma\XLDEMO2” folder. If you choose to use a different folder name, it is a requirement that the 
interface, service.xls, and the simulator, MySigmaSimulation.exe, be in the same folder.  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

169 

Press F7 to build a new exe

  
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

170 

Do not forget to move the newly compiled simulator, MySigmaSimulation.exe from the debug subfolder to 
the folder where the Excel interface, Service.xls, is located. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________________________________________________ 
 

Step 2. Layout the worksheets and create the navigation buttons 
 
Using the Excel FormatCells menu command, layout and put borders and colors in the tables and text in the 
worksheets. It is helpful to use different colored cells to indicate where your user needs to provide data (yellow cells here) 
and cells that will display error messages (green cells here). You can click on any green cell and, if the 
toolsoptionsformula bar box is checked, you will see the formula that displays the error messages (using =IF logical 
tests). To find out how these formulas work, press F1 to open the Excel VBA help file and search for the key words. For 
example: the green cell at the bottom of the RN Seed column in the Experiments table has the formula: 
 

=IF(MAX(E5:E14)>65000,"Seeds<65000!","") 
 
which will display the message “Seeds<65000!” if any seed in this column is larger than a maximum 
of 65000 (Again, press F1 for details.) 
 
Navigation buttons:  
 
Simple objects called a command buttons are used to navigate among the worksheets in the interface. 

These are easily added to worksheets. Open the controls tool bar by pressing  and press . 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

171 

The next place you click on your spreadsheet will create a command button called, by default, 
“CommandButton1” looking like 
 
 
 
Right clicking on this button and selecting Common Button Object  Edit allows you to change its 
shape and rename it. Try this and rename the button, “MyButton” You can also right click and select 
“view code” to see the actions that take place when this button is clicked. It should look like: 
 
Private Sub MyButton_Click() 
End Sub 
 
In most setups of VBA, key words are displayed in blue. 
 All VBA subroutines are initiated with the key word “Sub” followed by the name of the function, and they end 
with the key words “End Sub” (the Private key word indicates that this is your code). The parentheses after Click indicate 
that it is the name of a section of code. The generic name of the method of code for a button is “Click()” since the only 
thing you can do with a command button is to click it. Of course, no action is taken yet since none have been specified. 
Between these lines you can place VBA code describing the actions you want to be executed when this control object 
named “CommandButton1” is activated by the action “Click”.  
For example, the code to activate the Main worksheet and select a cell, (here A1), for the focus looks like the following.  
 
Private Sub CommandButton1_Click() 
    Worksheets("Main").Activate 
    Range("A1").Select 
End Sub 
 
When this button is clicked the spreadsheet will behave just as if you had tabbed to the Main worksheet, and clicked on 
cell A1.  
________________________________________________________________ 
 

Important exercise:  Put your spreadsheet in “design mode” by pressing the design tool  Now right click on the 
“Run Simulation” button and select “View Code”. The VBA editor should open and you should see the following code.   
 
Private Sub RunSimulation_Click() 
    Sheet2.Activate 
    Sheet2.Range("A1").Select 
End Sub 
Make sure both your spreadsheet, Service.xls, and the VBA editor are both visible on your screen. You should then 
click on the first line in the above code to highlight it. Next press F8 repeatedly to step through the code. You should see 
the spread sheet activate the Run Simulation worksheet and give cell A1 the focus as each of the above lines is executed. 
Stepping through code by pressing F8 in this manner is how you can learn what the sample VBA codes in this spreadsheet 
do as well as debug your own. When you are done exploring code in this manner, do not forget to put your spread sheet 
back into “operation mode” by clicking the design tool once again. 

 CommandButton1



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

172 

Step 3. Create a form to fill in experimental data 
 
The form for editing the experimental data in this interface looks like the following. 
 

 
 
The data in the timing and experiment tables on the second work sheet can be filled in directly; however, it gives the 
application a more professional look and makes it easier for the user if a form is created to populate these tables with data. 
The following shows how to create a form for filling in the experimental and timing data into the spreadsheet.  From the 
Excel window, push the “Visual Basic Editor” button to switch to the Visual Basic Editor window. This button looks like 

 
 

 
 
Inside the VBA Editor, open the project browser window. If the project browser is not automatically open,  press Ctrl-R. 
Right click in the browser window and select “Insert  UserForm” to create a user form.  Usually, the ToolBox menu 
will appear when you open the VBA Editor.  However, if the control toobox does not appear, push the “ToolBox” button 

 and this will show you the control tool box.  
 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

173 

These are the familiar controls you see in most windows applications. You can use these to create a form showed below 
by adding text boxes, command buttons, and image control objects. We will next look at the controls used in this 
interface.  

Frames 
A Frame control, as a container for grouping controls, is used to visually separate areas of the form.  Usually, you don't 
write much code for Frames; they just make your program look more professional.  Don't try to draw a Frame over 
existing controls, you should draw the Frame first and then draw its constituent controls inside of it.  Controls could also 
be cut and pasted into the Frame. To create a Frame on the form, simply select the Frame icon from the Toolbox menu 
and draw a frame on the form. 
 

(1) Select the Frame icon

(2) Draw a frame on the form

 

Command Button 
We have already seen command buttons. To create a command button, select the CommandButton icon and draw a button 
on the form.  Double clicking the button brings you into the code associated with the button as discussed this earlier. 
 

(1) Select the CommandButton icon

(2) Draw a command button on the form

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

174 

Textbox 

To create a textbox, select the TextBox icon from the Toolbox menu and draw textbox on the form. 
 

(1) Select the TextBox icon

(2) Draw a textbox on the form

 
 
 

Option Buttons 

To create an option (also called a “radio” or “toggle”) button, select the OptionButton icon from the Toolbox menu and 
draw an option button on the form. 
 

(1) Select the OptionButton icon

(2) Draw an option butoon on the 
form

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

175 

ComboBox 

To create a combobox (this type of control is also called a drop-down box or a list box), select the 
combobox option from the ToolBox and draw a comboBox on the form. 
 

(1) Select the ComboBox icon

(2) Draw a combobox on the form

 

Image Control 

To create an image control, select the Image icon from the Toolbox menu and draw an image control on the form. 
 

(1) Select the Image icon

(2) Draw an image control on 
the form

 
 
You specify a picture (provided by yourself or from a file) for an image control object from the properties menu of the 
object.  The properties menu of an object is opened by right clicking the object and select “Properties.” 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

176 

 

select a picture for the image control

 
 
 
 
 
The final form for our example looks like the following. 
 

Final outlook of the Form

 
 
 
Initializing the Controls in the Form 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

177 

A form in VBA is a collection of controls that function like the familiar dialog in Windows. The initial values of items in 
controls in a form are all set every time the form is activated. Selections and/or changes in the values are entered into the 
controls on the form. These new values for the controls are assigned to objects or variables when the form is exited 
(unless a cancel button is provided, in which case, the newly entered control values are ignored). After designing the form 
with its various controls, the next step is to fill in the initial values for all the controls on the form.  This is done with 
codes into the UserForm Initialize function, which is a built-in function for each form. 
 Double clicking on a blank spot on the form where there are no controls will open a window 
containing all the codes associated with the form.  First, make sure that your are working on the 
“UserForm_Initialize()” subroutine by selecting “UserForm” and “Initialize” from the left-
top corner and the right-top corner of the window respectively.  
 ComboxBox1, ComboBox2,… and TextBox1, TextBox2,…, etc. are the default names of 
these types of controls. Other names of the corresponding controls are intended to be descriptive.  
You can change the names of controls if you desire.  To view the name of a control, simply right 
click on it and select “Properties” to view or change the name or other properties. In this example, 
IndexOfExpr is the name given to the combo box. 
 For comboboxes, use the code, ComboBox1.AddItem “something” to add an item to it 
where ComboBox1 is the name you have given your combo box. To initialize our combo box, we 
will use IndexOfExpr.AddItem “something” to add an item to it.  The “value” of a combo 
box symbolizes the current selected item.  The first column (column 0) contains the list indices.  The 
second column (column 1) is the first element in each item, and so on.  Usually, the “value” of combo 
box is chosen as the list index values; this is done by using the following code. 
 

    'Add list entries to combobox. The value of each entry 
    'matches the corresponding ListIndex value in the combobox. 
    IndexOfExpr.AddItem "1"  'ListIndex = 0 
    IndexOfExpr.AddItem "2"  'ListIndex = 1 
    IndexOfExpr.AddItem "3"  'ListIndex = 2… 
 

For textboxes, use TextBox1.Value = “some text” to initialize theirs values. Information 
on initializing all controls are readily available in the help file found by pressing F1 at any time.  
 

Make sure you are working on the 
UserForm_Initialize() sub routine

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

178 

 
The complete code to initialize this form in our example is as follows. In VBA anything that follows a  ' on a line is a 
comment. Comments will probably will appear in green. Use comments to explain to others, and remind yourself later, 
what you are trying to do.):  
 

 
Private Sub UserForm_Initialize() 
    Dim strPath As String   'Path of the XL interface in your hard-
drive 
    strPath = ThisWorkbook.Path 
     
    'Add list entries to combobox. The value of each entry 
    'matches the corresponding ListIndex value in the combobox. 
    IndexOfExpr.AddItem "1"  'ListIndex = 0 
    IndexOfExpr.AddItem "2"  'ListIndex = 1 
    IndexOfExpr.AddItem "3"  'ListIndex = 2 
    IndexOfExpr.AddItem "4"  'ListIndex = 3 
    IndexOfExpr.AddItem "5"  'ListIndex = 4 
    IndexOfExpr.AddItem "6"  'ListIndex = 5 
    IndexOfExpr.AddItem "7"  'ListIndex = 6 
    IndexOfExpr.AddItem "8"  'ListIndex = 7 
    IndexOfExpr.AddItem "9"  'ListIndex = 8 
    IndexOfExpr.AddItem "10" 'ListIndex = 9 
     
    'Combo box values are ListIndex values 
    IndexOfExpr.BoundColumn = 0 
    'Set combo box to first entry 
    IndexOfExpr.ListIndex = 0 
         
    'Initialize Experimental data 
    OutputFile.Value = "Output01.xls" 
    RandomSeed.Value = 12345 
    RunTime.Value = 240 
    TraceEvents.Value = 1 
    WalkinRate.Value = 0.3 
    CallinRate.Value = 0.6 
    Agents.Value = 5 
    PhoneLines.Value = 2 
         
    'Initialize Timing data 
    ArrivalOption.Value = True 
     
    ArrivalMin.Value = 0 
    ArrivalMax.Value = 1 
    ArrivalP.Value = 0.5 
    ArrivalQ.Value = 0.5 
    ServiceMin.Value = 0 
    ServiceMax.Value = 1 
    ServiceP.Value = 0.5 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

179 

    ServiceQ.Value = 0.5 
End Sub 
  
 

Creating actions for each of the Image Controls   
 
A pair of option buttons (sometimes called radio or toggle buttons) is used to select whether a probability distribution 
shape is to be chosen for service times or for the interarrival times by the different image controls. The shape of a Beta 
random variable is determined  by values of two parameters, p and q (see Chapter 9). This button has the default property 
“togglebutton.Value” and default method “Click”. A togglebutton is activated by selecting it (clicking on it) and sets its 
Value to the Boolean constant, True, if it is inactive its Value is set to False. The names of the togglebuttons are 
ArrivalOption and ServiceOption.  
 

Make sure you are working on the Click sub 
routine for an image control

  
 
 
 
 For the selected option button we need to create a subroutine for each image object (the pictures of probability 
distributions) so that when a user clicks on a picture, the shape parameters the chosen distribution curve will be written 
into the text boxes corresponding to the active option button. To see the code for the image objects, double click on an 
image control, select the name of that image control (for example “p05_q3”) and “Click” respectively from the left-top 
corner and the right-top corner of the window. This code will check if the radio button for the interarrival time 
distributions is active (making ArrivalOption.Value equal to “True”) else the probability distribution for the service times 
will be selected). The code for one of these image objects (the one for parameters p=.05 and q=3) looks like the following: 
 
'Each subroutine below represents the chosen distribution. 
Private Sub p05_q3_Click()     
    If ArrivalOption.Value = True Then 
        ArrivalP.Value = 0.5 
        ArrivalQ.Value = 3 
    Else 
        ServiceP.Value = 0.5 
        ServiceQ.Value = 3 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

180 

    End If    
End Sub 
 
ArrivalP, ArrivalQ, ServiceP, and ServiceQ are names of text boxes for corresponding distribution shape parameters. The 
default property of a textbox (say ArrivalP) is its value, therefore, TextBox1 = “text”, is equivalent to 
TextBox1.Value = “text”.  You should highlight the first line of this code and step through it pressing F8 as in the 
exercise earlier in this section.  
 
The following is the sub routine associated with the “Change Timing.dat” button to write the Timing.dat file based 
on the distributions selected by the user.  Double click on this button or right click and select “View Code” to bring up the 
window to see the codes.   
 
 
 
'Change Timing data. 
Private Sub ChangeTimingData_Click() 
 
    Dim shtName As Worksheet 
    Dim arrData(1 To 2, 1 To 4) As Double 
 
     
    'We are working on the Experiments worksheet. 
    Set shtName = Worksheets("Experiments") 
     
    'Store data from the Form into an array (arrData) 
    arrData(1, 1) = ArrivalMin.Value 
    arrData(1, 2) = ArrivalMax.Value 
    arrData(1, 3) = ArrivalP.Value 
    arrData(1, 4) = ArrivalQ.Value 
    arrData(2, 1) = ServiceMin.Value 
    arrData(2, 2) = ServiceMax.Value 
    arrData(2, 3) = ServiceP.Value 
    arrData(2, 4) = ServiceQ.Value 
     
    'Output the data to the TimingData range defined in worksheet. 
    shtName.Range("TimingData").Value = arrData 
 
     
    MsgBox "Timing data changed successfully!", vbOKOnly, "Thanks!" 
 
End Sub 
 
Again, make sure you are working on the right sub routine; select the name of this button for example 
“ChangeTimingData”, and again, right click on it and select “Properties” and view the name of a control and “Click” 
on the left-top corner and the right-top corner of the window.  Step through this code pressing F8 with both the VBA 
editor and the spreadsheet visible as shown in the following figure. 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

181 

“TimingData” is a name defined in the worksheet   
 
Once the user hits the “Add Experiment” button, the experimental data will be copied from the form to the worksheet.  
The “Exit” button will unload the form from the memory.  The codes for doing these are shown below.  To edit these 
codes, simply right click on the button and select “View Code.”  Of course, you also need to select the right subroutine to 
work on by selecting the name of the button and “Click” respectively from the left-top corner and the right-top corner of 
the window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

As mentioned in Section 11.4.1, there are three fundamental steps that the spreadsheet must do: (1) 
Write input files, (2) run the simulation, and (3) get the output.  The VBA codes for the subroutines 
for these steps, WriteDataFile and RunExe, and, GetResults, are all contained in 
“module1”. These codes are fairly complex and can simply be copied to your spreadsheet 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

182 

applications by including module1 in your interface; they are very general utilities. The details for the 
three steps performed by these subroutines are discussed next and may be skipped by those not 
interested in fine points. 
 

  
Step 4. Have the spreadsheet write the simulation input files 
 
To run the simulator from the Simulation worksheet, click on the “Simulate” button in the Simulation worksheet. Clicking 
this button calls two subroutines, WriteDataFile  that write data from the spreadsheet to your hard drive needed for 
the simulation and RunExe that executes the simulation executable. After the simulation has finished running, it then 
calls a subroutine, GetResults to display the output plots..   
 It is the convention (and we recommend too) that user-defined sub-routines are put into 
modules. The code for worksheets and forms should contain only what is necessary for performing 
certain actions, such as displaying an message or show/hide a form. As mentioned earlier, to create a 
module, right click “Modules” from the project browser window and select “Insert  Module.”  
 You can see the code for writing the input files and running the simulation by putting your 
spreadsheet is in “design mode” and right clicking on the “Simulate” button.  This will show the 
following code. 
 
'Run simulation 
Private Sub Simulate_Click() 
    Dim iResponse, i As Integer 
    iResponse = MsgBox("Have you filled in the timing data and 
experimental data ? " & _ 
      "If yes, click 'Yes' to execute simulation, otherwise, " & _ 
       "Click 'No' to fill in data.", _ 
               vbYesNo + vbDefaultButton2, _ 
                       "Run Simulation") 
    If iResponse = vbYes Then 
      
        'These are subroutines defined in Module1. 
        'Create Timing.dat and Experiement file. 
        WriteDataFile "Experiments", "TimingData", "Timing.dat" 
        WriteDataFile "Experiments", "ExprData", "MySigmaSimulation.exp" 
         
        'Run Exe 
        RunExe 
    Else 
        Worksheets("Experiments").Activate 
    End If  
End Sub 
 
Your screen should look somewhat like the following 
   
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

183 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WriteDataFile subroutine: Creating the timing data file and experiment file 

The sub-routine WriteDataFile shown in the following figure is a generic procedure that writes an table on the 
worksheet into a data file.  It takes three arguments: (1) the name of the worksheet that contains the data table, (2) the 
name of the array (range) that contains the data table, and (3) the name of the data file to be created and to which the data 
is to be written.  Given appropriate arguments, this sub-routine can be used to create the timing data file (Timing.dat) 
and the experiment file (EXP). 
 The WriteDataFile subroutine that is called by the above subroutine copies data from an 
Excel worksheet into files on the hard drive so the simulation can read it. The TimingData table is 
first copied to a file called timing.dat on your hard drive, and the data from the ExprData table is 
then written to a file called MySigmaSimulation.exp on your hard drive. (TimingData and 
ExprData are named ranges (discussed earlier) on the Experiments worksheet click F1 for help if you 
don’t know what a range is in Excel.) 
 This sub-routine first creates the text file object.  Then, it copies the data from the worksheet 
(the name of the array is “strRangeName” which is defined using a similar procedure given in 
Error! Reference source not found.) to the temporary buffer, called arrData.  The dimensions (rows 
and columns) of this array is computed using built-in API (Microsoft Applications Programming 
Interface) functions UBound() and LBound(). 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

184 

Copy data from worksheet to temporary 
buffers and compute the dimensions 
(rows and columns) of the data.

A generic sub-routine that writes 
an array of data into a data file.

  
 
 

A double loop is used to output data into the text file: (1) the outer loop goes through all rows of the data range line by 
line; and (2) the insider loop concatenates the elements (separated by a space) on a row into a string (called 
“strDataLine” in this example) and writes the string into the text file. If any element is missing in this row (in this 
example, the second element of the second row—the RN Seed—is missing), then this row  

Any incomplete experiment 
setting will not be copied to 
the EXP file.

    
 
will be skipped (see the “Exit For” VBA command inside the insider loop and the “IF ...” condition before 
oDataFile.WriteLine command).  The actual function that writes a string into a text file is the command 
“WriteLine” associated with the text file object “oDataFile” that we created earlier. (The o in front of these names 
indicates that these are objects according to the naming convention explained in Appendix C.) 
 
 

Warning: any incomplete experiment setting (e.g., missing any elements) in the EXP file will 
cause errors during the simulation and no output is generated in most of the time. 

 
 

Do not forget to close the text file and free the memory after the file is written. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

185 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

186 

 
Step 5. Enable the spreadsheet to execute the simulator 
 
We discussed the WriteDatafile subroutine earlier. Now we look at the details in the RunExe 
subroutine. The subroutine RunExe is also defined in Module1.  
 
First Make sure the simulator and the input data are in the same folder: Once that the simulation input data is on your 
hard drive, the simulation is run by calling the subroutine, RunExe. However, this will not work if the simulator, 
MySigmaSimulation.exe, and the data are not in the same folder as the data. It is crucial that the spreadsheet, 
Service,xls, and the simulation executable, MySigmaSimulation.exe, be in the same folder and the director 
path to this folder be the default for Excel. There are two directory paths of concern and they have to be the same in order 
to run your simulation correctly. These two paths are (1) the Excel-path (Excel’s default path) and (2) the Interface-path 
(the path at which your XL-interface and other necessary files locate—e.g., Timing.dat, 
MySigmaSimulation.exp, MySigmaSimulation.exe, and the output files). These two paths must match 
because otherwise all the output files generated by the EXE will be stored under the default directory of Excel—the 
Excel-path.  If your XL-interface is under a different directory, it will not be able to access these output files unless other 
options are taken.  
 Having the whole path of the output file specified in the first column of EXP file will not solve this problem 
because the spaces within the path (if any) will cause the EXE to consider the whole path as several input parameters. One 
way to solve this problem  is to change the default path of Excel manually within Excel. However, this method is not 
satisfactory either since the user has to change the path every time they move their XL interface to other directory.  
 The solution recommended here is to use the “ChDir” and “ChDrive” API commands build into VBA to 
explicitly change the default drive of Excel and path to where your XL spreadsheet interface and simulation executable 
are located.  ChDir changes the default path of Excel to the path at which your XL interface locates.  These two 
procedures have to be done separately because ChDir will not change the drive. The code to do this is simply 
 
    'Change the current drive and directory 
    strPath = ThisWorkbook.Path 
    strDrive = Mid$(strPath, 1, 1) 'Get the drive letter: e.g. in "C:\Sigma" is "C" 
    ChDrive strDrive 
    ChDir strPath 
 
This code is found in Module1 in the Project Explorer (opened by pressing Ctrl-R in the VBA editor 
if it is not open). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

187 

To use them in your own interface, simply copy and paste them on the top of your module.  
 
Execute the Simulator: The heart of the RunExe subroutine is the call to Shell.  
 

Shell(strExe, vbNormalFocus)  
 

This API function call in this application will have parameter values of  strExe = 
c:\sigma\XLDEMO2\MySigmaSimulation.exe, which is the name of the simulator program to be run an path, 
vbNormalFocus is a defined constant, which tells us to open a command window to watch the executable run. When 
using the Student version of SIGMA, you need to enter a slowly changing random integer when prompted to execute each 
run. Professional users can set this second parameter to vbHide and this window will  open, but remain hidden from the 
spreadsheet user.  
 

Remember: If you completely hide your simulation execution from the user by using the 
vbHide option for the shell command, remove the following two lines in the translated C 
code (two lines after  // experiments terminated) 
     . 
         scanf("%1s",&keytoclose); 
         fflush(stdin); 
 
before compiling. Otherwise your executable will just run forever. It is much safer to 
use the vbNormalFocus command so the user sees what is happening during the 
simulation run  

 

Again, to understand what each line of code does. Click on RunExe( ) and press F8 repeatedly to 
single step through the VBA code and press F1 for more information.  
 
 

Note: you can control the execution of several completely different SIGMA simulations from 
the same spreadsheet with multiple calls to the “Shell” API command selected using IF 
conditions. 

 
Running an experiment without filling in all input parameters could cause errors. Therefore, when 
creating the EXP file, we have the following procedure to prevent this problem from happening.  This 
procedure is embedded inside the sub routine “CreateExp(),” which is defined inside module1.   
 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

188 

Before running the executable, RunEXE() will make sure that both the Timing.dat and the 
MySigmaSimulation.exe are there.  It does not check for the experiment file because users might want to input 
experimental data manually from the command prompt. 
 

Make sure the Timing.dat file and 
the running.exe are there.

 
 
 
Make sure XL waits for the completion of the simulation: To have Excel wait for the executable to finish producing the 
output before trying to read it we use three API functions built into Excel (i.e., synchronizing these two processes). These 
functions are defined at the beginning of Module1.   
 

API functions used to synchronize the 
XL-interface and the EXE.  Just copy 
them to the top of your “Module1.”

  
 
When the Shell command is used to run an executable (here, MySigmaSimulation.exe), the return value of this command 
is the process ID  (called the “handler”) of the executable. This ID is then used by the API function OpenProcess() (one of 
the three API functions defined earlier) to identify which process to synchronize.  The API function 
WaitForSingleObject() will suspend the XL-interface, if the executable is still running, until the executable is finished.  
Finally, it releases the process ID handler used to identify the executable so as to free the memory. The code that waits for 
the simulation to finish is in the middle of this module and should be copied into a code module for your application.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

189 

 

“WaitForSingleObject” suspends 
the XL-interface until the EXE 
terminates.

Use the Shell command to run an 
executable, i.e., running.exe.  It 
returns the process ID of the 
executable.

  
 

Import the results after the run into Excel: After the simulation finishes, a message box pops up to inform the user that 
the simulation run is finished and to warn the user that it might take several minutes to import the results from all output 
files in to Excel, which is done by the sub-routine GetResults.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Creating plots showing the simulation results: The GetResults subroutine will open an output file, create a 
plot for the output, copy this plot to the main XL-interface, and finally close the output file.  If n (n ≤ 10) experiments are 
performed, this procedure will be repeated n times, creating n plots in your XL-interface, each of which is pasted on one 
of the 10 built-in worksheets.  If more than 10 experiments are needed, then the workbook can be modified to 
accommodate more experiments and plots. 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

190 

Only valid settings have output.

See VB’s Help for more options (key 
word: OpenText and ChartWizard)

 
 
 
 
During the importing of the output files from the simulation runs, a message box warns that it often will take longer to 
import the data into Excel then it took for the simulator to create the output in the first place.  
 
 
 

After importing results, display a 
form for use to navigate among 
plots.

A message box is shown to alert user 
that it might take several minutes to 
import all the results, which is done 
by the GetResults sub-routine.

  
 
 
 
This form only displays buttons if the input row for run in the Experiment file was correct. 
  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

191 

The form only shows those Run’s 
that have all fields entered.

  
 
Disable the Excel prompt to save the files: To disable the annoying message Excel issues when closing an unsaved 
modified output file without saving it, you can use the following code.  
 
     'Stuck this in so that it would not ask about the 
     'large amount of information on the clipboard 
            Range("A1").Copy     
    'Close the data file and don't save your changes 
            Windows(strOutputFile).Close SaveChanges:=False 
 

 

Close the output file without saving it

 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

192 

Step 6. Create a form to display the simulation results 
 
When a the batch of experiments in a run finishes, the “View Plots” button is clicked to show UserForm2 that is used to 
select which run output in the experiment to view. The GetResults subroutine created plots for the simulation results. 
The output from each simulation run is shown easily by clicking the corresponding button.  Again, you should click on 
GetResults and repeatedly press F8 to learn what this code does.  
 
 The View Plots button on the simulation worksheet opens an output file, creates a plot for the output, copies this 
plot to the main XL interface, and finally closes the output file.  If you run n (≤10) experiments, this procedure will be 
repeated n times, creating n plots in your XL interface. 
 

 

 
 
Selecting among the different Output Plots.. 
 
When all plots are ready, the interface switches back to the “Simulation” worksheet and brings up the navigation bar. 
 
 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

193 

 
Only those experiments that have been performed have output plots. 
 

 
 
The Initialize sub routine checks the “Experiments” worksheet and disables those buttons for which the corresponding 
experiments are not performed. 
 

Hide those command buttons whose 
experiment is not performed.

  
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

194 

When the user hits a button, the corresponding worksheet containing the output plot will be activated.  At most 10 plots 
are allowed in this example. 

 

Each button simply activates the 
corresponding worksheet, which 
contains the plot of the run.

  
 
As an example, the following plot is from experiment number 1. 
 

Output of Experiment #1

  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

195 

Step 7. Miscellaneous details 
 

Set default starting worksheet to the Main worksheet: Rather than have Excel start where the last 
session ended, it is better to direct the user to the “Main” worksheet when the spreadsheet is opened. 
This done by the code in the ThisWorkbook object in the Project Explorer.  
 

Private Sub Workbook_Open() 
    Worksheets("Main").Activate 
    Range("A1").Select 

   End Sub 
 
The sub-routine Workbook.Open() is the first sub-routine to execute before the workbook is seen on the screen; therefore, 
we can add code into this sub-routine to activate the “Main” worksheet.  Right click the ThisWorkbook and select “View 
Code.” 

 

Go to the “Main” worksheet 
when the Workbook is opened.

   
Stop screen flashing by using Application.ScreenUpdating = False: If you run 10 experiments, there 
will be 10 output files and GetResults will open them one by one cause screen flashes. To stop 
the screen from flashing repeatedly, include the following code. 

   'We don't want to see the screen flashing 
    Application.ScreenUpdating = False 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

196 

 
 

Clear plots when exiting to save space: Since the plots could contain an enormous of data, it is 
recommended that you clear them when closing the spreadsheet. This code is also found under the 
ThisWorkbook object.  

 

 
 

  
and displays the following messagebox to the user.  
 

 

 
 

Close the output without saving it: Like in the GetResults module, we want to avoid the message asking if you want 
to save your output plots for each one of the worksheets created for each run of the experiment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

197 

 
 

 
Using this example as a template and the source of module codes, you should now be able to create professional looking 
dynamic spreadsheets run simulations that run SIGMA-generated simulators. Again: you should click on the code and 
press F8 repededly to step through this code and use help (F1) for more information to get acquainted with VBA.  
 
 
11.5 Replacing the SIGMA Pseudo-Random Number Generator 
 
SIGMA uses the pseudo-random number generator function, lcg(), provided in the SIGMALIB.LIB file on your disk. 
Like all pseudo-random number generators, lcg() is not perfect. You might want to replace this generator in your 
SIGMA-generated source code with one of your own. Fortunately, this is easy to do. Simply add your function your 
model and change the definition of RND as lcg() in the SIGMALIB.H file. A detailed example is given in Appendix B.18.  
 
11.6 Exercises 
 
11.6.1  Translations 
 
Translate any of the models in Chapter 5 into C and run them. 
 
11.6.2  Batched experiments 
 
Create an experiment file for a batched experiment with any model you translated and compiled in the previous exercise. 
 
11.6.3  Spreadsheet interface 
 
Create a spreadsheet interface for the experiment in the previous exercise. 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

198 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

199 

 
 
 
 
 
 
 
 
 

12 
 

Advanced Programming Techniques 
 

 
Chapter 12 contains numerous advanced techniques that allow you to get the most out of your simulation programs. 
Techniques include how to start a run with simultaneously executing vertices, how to stop an event graph model on any 
general condition, how to use arrays of any dimension, how to run several replications of the same model in parallel, how 
to reduce the number of vertices in a model without changing the model's behavior, and how to use pre-emptive execution 
to eliminate the need to schedule some events.  
 
12.1 General Starting and Ending Conditions 
 
If several vertices are to be simultaneously executed or scheduled at the start of a run, create a start-run vertex (called, say, 
RUN) as vertex 1. Create edges from this vertex that schedule all the other vertices unconditionally with zero delay times 
and correct execution priorities. 
 To stop a run on any general condition, simply create a STOP vertex as the counted event. Add appropriate edges 
entering this vertex, conditioned by the desired halting criterion. In SIGMA, set the ending condition in the Run 
Options dialog box to Stop on Event, locate the STOP vertex in the drop down list, and click on it. The Iterations 
box should have a count of 1. 
 
12.2 Simultaneous Parallel Replications 
 
To assess the variability of a simulation output series, it may be desirable to run several independent replications of the 
same model. Parallel replication has a number of advantages, such as making the detection of initialization bias much 
easier. 
 With event graphs, it is very easy to run these replications simultaneously. Simultaneous replication of a model is 
another application of event parameters and edge attributes. It might be useful here to think of parallel replicated 
simulations as an array of identical event graphs that are to be run at the same time. 
 To set up parallel replications, simply add two state variables to the model: one variable to identify the 
replication to which a particular event occurrence belongs and the other variable to tell how many simultaneous 
replications are desired. The replication index is globally added to the end of all edge attribute and event parameter 
strings. Also, every one of the original state variables gets an added array dimension for this index. 
 Consider the model of the single server queue (CARWASH.MOD) in Figure 2.6. An event graph for running three 
simultaneous replications of this model is given in Figure 12.1. The problem with this model is that, in addition to being 
messy, each time another replicate is desired a new sub-graph has to be appended.  
 
 
 
 
 
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

200 

 
Figure 12.1:  Three Simultaneous Parallel Replications of a Queue 

 

 

 
 
 
We can solve this easily by using parameterized events; define R as the desired number of replicates and M as an index to 
identify the replicate to which an event vertex belongs. The resulting parameterized event graph now looks like that in 
Figure 12.2.  
 
 

Figure 12.2:  Simultaneous Parallel Replications of a Queue 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Run
(m)

Enter
(m)

Start
(m)

Leave
(m)

m

m+1

m m

m
m

ta

ts~

~

~

(m<R-1)

(S[m]>0)

(Q[m]>0)

{S[m]=1}
{Q[m]=Q[m]+1}

{Q[m]=Q[m]-1,
S[m]=0}

{S[m]=1}

Run
(m)

Run
(m)

Enter
(m)

Enter
(m)

Start
(m)

Start
(m)

Leave
(m)

m

m+1

m m

m
m

ta

ts~

~

~

(m<R-1)

(S[m]>0)

(Q[m]>0)

{S[m]=1}
{Q[m]=Q[m]+1}

{Q[m]=Q[m]-1,
S[m]=0}

{S[m]=1}



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

201 

 
Finally, as a more complicated example, consider BANK2.MOD discussed previously, where we kept track of transient 
entities. Our queueing simulation event graph is parameterized for R simultaneous replications in Figure 12.3. The event 
graphs in Figures 12.2 and 12.3 are complicated and good tests of your comprehension. Fortunately, event graphs for 
these models look almost the same as the simple model in Figure 2.4. In fact, these models were created from our basic 
queueing model by using an ASCII editor to globally add the parameter, M, to all edge attribute and vertex parameter 
strings and also to make M an additional state variable dimension. The only other change needed was to set up a loop on 
the initial RUN vertex to start each replicate. 
 
Figure 12.3:   Simultaneous Parallel Replications of a Queue with Five Servers Collecting  
 Customer Waiting Times 
 

 

 
 
 
 
 Notice that if the same arrival rate is used for all three replications, one ENTER event could be used to generate 
arrivals for all three replications. This would automatically implement the variance reduction technique of common 
random number streams discussed in Chapter 9. If our replicates represented small differences in some of the input 
parameter values, this technique could be used to estimate the gradient of the simulation response in a "single run" using 
finite differences between the averaged output series. 
 An implementation of parallel replications in SIGMA is given in the model, REPLCATE.MOD. Here we set up our 
basic model, CARWASH.MOD, for simultaneous parallel replication. The SIGMA graph for this model looks identical to that 
for CARWASH.MOD in Chapter 3, with the single exception of the "do loop" for the RUN vertex. In the RUN vertex, each 
replication is STARTed and indexed by the value of M passed as a vertex parameter.  
 
 
 
 
12.3 Event Graph Reduction 
 
It is sometimes possible to reduce the number of vertices in an event graph without changing the behavior of the model. 
Simulations with few events will often run faster than models with more events, although this is not always the case. An 
event graph with fewer vertices may lead to a more efficient simulation program; however, the graph may be more 
difficult to understand. Generally, models with a large number of very simple vertices will be easier to debug or modify 
than models with fewer but more complicated vertices.  
 It is possible, however, to increase the efficiency of a simulation without increasing the complexity. This is done 
by using pre-emptive vertex execution, a scheduling delay time for an edge given by an asterisk (*). Recall that a delay 
time of * means that the scheduled destination vertex is executed immediately, without being placed on the future events 
list. It pre-empts any other events that might be scheduled at the same time. This often results in a significant reduction in 
simulation execution time.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

202 

 We will use our basic single server model to illustrate event graph reduction. The START vertex can be 
eliminated if we redefine Q (queue) to be the number of customers in the system, including any customers in service, 
rather than the length of the waiting queue. The resulting graph is shown in Figure 12.4.  
 

Figure 12.4:  Event Graph Without a START Event 
 

 

STATE VARIABLE: 
Q = Number of Customers in the System 

 
 

 
To get the same run time efficiency, the START vertex can be effectively eliminated without changing the graph except to 
make the delay times on the edge from ENTER to START and the edge from LEAVE to START asterisks (*) rather than 
zero. This would cause the execution of the START event to occur without ever scheduling it on the list of future events. 
 It is possible to eliminate all of the vertices in our model except the RUN vertex (which is executed only once 
anyway) and the LEAVE vertex. This would require that we generate the (random) number of arrivals to the queue during 
the time that a single customer is served. We will call this number of arrivals during a service interval, A. In some simple 
cases, a value for A can be generated very easily (e.g., if the times between customer arrivals are exponentially distributed, 
A will have a Poisson distribution). The single-event model for our queue is shown in Figure 12.5. 
 

Figure 12.5:  Single Vertex Model (RUN and LEAVE) 
 

STATE VARIABLES: 
Q = Number of Customers in the System 
A = Number of Arrivals During a Service 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

203 

 
 
 
While the model in Figure 12.5 might run very fast, it is difficult to enrich; therefore, it is not as useful as some of our 
earlier models for this system. 
 It is possible to use edge attributes to assign values to vertex parameters rather than using state changes. At first 
glance, this might seem like a complicated way to do things, but it is useful. Sometimes edge attributes make the model 
clearer; sometimes they do not. We will illustrate this technique with our single server queue, where the status of the 
server, S, and length of the waiting line, Q, will become parameters of the START and LEAVE vertices. The values of these 
parameters are passed as edge attributes. When an entering customer finds the server idle (S>0), the customer will begin 
service, making the server busy; the value 0 is passed as an attribute of the edge from ENTER to START into the START 
parameter, S. The result is the same as having the state change S=0 in the START vertex. Similarly, when the server 
finishes service, its status will change back to idle (1). This is done by passing the edge attribute value, 1, along the edge 
from START to LEAVE into the parameter, S, of the LEAVE vertex. This is shown in the event graph in Figure 12.6 
(NOSTATEQ.MOD). 

 
 

Figure 12.6:  Event Graph That Uses Edge Attributes to Assign Values to Vertex Parameters 
 

 
STATE VARIABLES: 

 
 

Q = Number of Customers Waiting in Line, initial value set to zero, by default. 
 
S = Status of Server (0=busy/1=idle), initially set equal to 1=idle. 

 
 

 
 

RUN LEAVE

(Q==0)

{Q=Q-1+A}

(Q>0)

~
~

ts

ts ta+



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

204 

 
 
 
 We can do this since there is no chance of the state variable, S, changing during the time intervals represented by 
the delay times of the edges from ENTER to START and from START to LEAVE. If we had more than one server in this 
system (S initially greater than one), we would not be able to do this since S might be changed by more than one instance 
of an event vertex. 
 
12.4 Using Arrays of Arbitrary Dimension 
 
Four-dimensional arrays will be sufficient to meet most simulation modeling needs. However, if you find it necessary to 
have higher dimensional arrays, the method discussed here is easily implemented. Assume that one conceptually is 
working with a two-dimensional (N by M) array, A. That is, the element in the i th "row" and j th "column" of this array is 
the value of the variable Ai, j . The equation, L = Ai,j, written in SIGMA is L = A[N*J+I]. Recall that we start indexing 
arrays with zero, not with one. 
 This indexing scheme can be extended to more than just two dimensions. For example, element, Bi,j,k, of an N by 
M by L array would be the element, B[N*M*K+N*J+I], of a single dimensional array, B[.]. The logical structure for a 
three-dimensional array of size (4,6,2) is shown in Figure 12.7. Each element of the single dimensional array, B[.], is 
shown in a cell. 
 A more sophisticated array indexing scheme uses "ragged" arrays, which sometimes saves memory. Here the 
total number of elements in all rows strictly less than I is the value of the variable M[I]. The i,jth element of the ragged 
array, A, is given by the nested arrays A[M[I]+J]. When an element is added to the array, both the M and A arrays are 
updated (resulting in some additional computational overhead). Ragged arrays can be useful when the rows of a matrix 
are of unequal length (for example, the i,jth element is some characteristic of the ith customer in the jth queue). The 
trade-off in using a ragged array is favorable when the rows (or columns) of the array are of significantly differing 
lengths. 
 
 
Figure 12.7:   Representing a 4 by 6 by 2 Dimensional Array asElements [24*K + 4*J + I] of a One-Dimensional 

Array.  For example: Element [2,4,1] is [24*1 + 4*4 + 2] = [42]. 
 

 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

205 

 
 
 
 
 
12.5 Eliminating Event Scheduling 
 
By using pre-emptive vertex execution (delay times = *) it is sometimes possible to run a model without scheduling 
events. The model, NOLIST.MOD, does this for a single server queue. The graph for this model is given in Figure 12.8. 

In this model, the times of the next events are computed as state changes and the simulated virtual time (normally 
kept by SIGMA in the variable, CLK) is updated in the vertex, NEXT.  The simulation generated from this model runs very 
fast but is difficult to modify. For readers interested in the more theoretical aspects of event graph modeling, the graph for 
this version of a single-server queueing system is related to the geometric dual of the event graph of our earlier model of a 
single server queue, CARWASH.MOD. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

206 

 
 

Figure 12.8:  Event Graph Without Scheduled Events 
 

 
 

 
 
 
 
 
12.6 Exercise 
 
12.7.1  Multi-Dimensional Arrays 
 
Write an expression that will translate a point (v, w,x,y,z) in a five-dimensional array P with dimensions I by J by K by L 
by M into a one-dimensional array q. 
 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

207 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

208 

 
Appendix A 

 
 

Event Execution Sequence 
 
In SIGMA, a mathematical expression can be used almost anywhere a variable can be used. This includes vertex state 
changes, edge delay times, and edge attribute values. In fact, SIGMA allows the execution order of simultaneous events to 
be state dependent through the use of mathematical expressions to model dynamic edge priorities. This gives SIGMA 
additional modeling power and allows rather complex applications where state-dependent event sequencing is important. 
In SIGMA the order of execution for an event vertex is as follows: 
 
1. Set the vector of parameters for this vertex to the values of the edge attribute expressions placed on the future events 

list when this vertex was scheduled. 
 

2. Make the state changes specified for this vertex. 
 

3. Evaluate the edge conditions for every edge exiting this vertex. 
 

4. For each exiting edge with a true edge condition: 
 

a. If the edge is a vertex scheduling or pending edge, 
 

i. Evaluate each of the edge attribute expressions. 
 

ii. Compute the edge delay time.   
 

iii. If the delay is equal to a *, immediately execute the destination vertex and go to the next event; 
otherwise, compute the edge execution priority and schedule the destination vertex for this edge onto 
the future events list. 

 

b. If the edge is a vertex cancelling edge, 
 

i. If the edge attribute is equal to a *, cancel all scheduled vertices that are the same type as the destination 
vertex, regardless of the values of their attributes. 

 

ii. If the edge attributes are left blank, cancel only the next scheduled vertex that is the same type as the 
destination vertex, regardless of the values of its attributes. 
 

iii. If the edge attributes are not blank and not equal to a *, cancel any vertices that are of the same type as 
the destination vertex with the exact same attribute values as this cancelling edge. 

 

Most of the time you will never have to think about execution order; however, you should be aware of it. The intuitive 
notion of an "event" would be a sub-graph with zero-delay times on all of the edges in this sub-graph. Event graphs are 
merely pictures that decompose events into manageable logical components. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

209 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

210 

 
 

Appendix B 
 
 

Reading SIGMA-Generated C Programs 
 
This appendix is intended to help persons not familiar with the C programming language understand the C simulation 
programs generated by SIGMA; it is not intended to be a comprehensive introduction to C. You should look at the C 
simulation, CARWASH.C to find examples of C program elements discussed here. Consult a good reference on C 
(Kernighan and Ritchie, 1988) for correct definitions and details on the C language. SIGMA-generated C programs also 
run under C++, which includes objects with the C language as a subset. 
 There are several powerful features of C that are not used in the simulations generated by SIGMA. These include 
structures, pointers, "do-while", etc. Learning C or C++ is strongly encouraged as it will allow you to greatly improve the 
efficiency of your simulations. The library of simulation functions, SIGMALIB.LIB, makes more extensive use of the C 
language than do the simulations generated by SIGMA.  
 
B.1 Functions 
 
C programs have a simple and elegant structure. C programs are composed of functions, that is, subprograms that return a 
single value when called by another function.  Functions are identified by function names followed by parentheses, (). 
The parentheses following a function name contain the parameters for the function; these are the names of any variables 
whose values the function will need. Every C program has a master function called, main(), where execution starts. The 
main() function typically does little else except initialize variables and call other functions. The functions in a C program 
should be defined at the top of the program or in a file (called a header file) that will be included in the program before it 
is compiled.  
 
B.2 Parameters 
 
Parameters for functions have only their values passed to the function, not the variables themselves. Therefore, the values 
of the parameters passed to a function are not changed in the program that calls the function (unlike some 
implementations of FORTRAN).  
 
B.3 Comments 
 
Comments to increase understanding can be included anywhere in the code; they are ignored by the compiler. Comments 
begin with the delimiter, /*, and end with the delimiter */; they cannot be nested. In C++, the delimiter // denotes a 
comment that ends at the end of the line. The code generated by SIGMA has extensive commenting with most comments 
being the descriptions you entered when defining the variables, vertices, and edges in your event graph model.    
 
B.4 Variables 
 
All variables and functions must be declared by giving them a type and a name. Variable and function names are 
sequences of letters or digits starting with an underscore, _, or letter. These identifiers may be of any length; however, 
some compilers only distinguish as few as the first six characters. Case is important, e.g., the variable, TimeOfDay, is 
entirely different for the variable, timeofday. The code you created in your SIGMA model as well as SIGMA key words 
will appear in the C translation in upper case letters. All other C code generated by SIGMA is in lower case. This way you 
can tell instantly the C code you created that is specific to your simulation from the generic C code needed to run your 
program. 
 

Important: Code that you created that is specific to your SIGMA simulation will appear in upper-case characters. 
Generic C code is in lower-case. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

211 

 
 Variable definitions consist of the variable type followed by one or more variable names. Examples of C variable 
type definitions used by SIGMA include: 
 
 

int i, J; /* i and J are defined to be short integers */ 
long k; /*k is defined to be a long integer (with more 

significant digits)*/ 
float g,f[6]; /* the variable, g, and array, f with 6 elements are 

defined to be real (floating point) numbers with 
decimals */ 

double h; /*the variable, h, is defined to be a double-precision 
floating point number */ 

char target[10], /* target and date 
 date[100]; are defined to be strings of characters of the 

specified lengths, the size of the string should allow 
for the final null string termination character, '/0'. 
Indices of n element array is 0 to n-1.  */ 

int *p; /* the variable p is a pointer to the address of an 
integer */ 

 
The last example is a pointer that will have as its value the memory address of an integer variable. To find the value of the 
memory address of a variable, place & in front of the variable name. 
 Using only upper-case characters for SIGMA expressions to avoid confusion with lower-case reserved words 
used by ANSl Standard C is not fool-proof. For example, it is acceptable in SIGMA to name an event vertex EXIT or 
exit. However, if you use a Microsoft C (Version 5.1) compiler, these words have special meaning. This seems to cause 
no problems if you use other compilers. Of course, these other compilers also have functions added to their libraries, and 
you must avoid their function names. 
 
B.5 Statements 
 
Simple statements in C can be made as in most other languages, with a variable being set equal (=) to an expression. C 
statements are grouped into related blocks of code delimited by braces, {}. These blocks of code determine the ranges of 
variable definitions as well as the range of iterations (loops) and sequencing (branching) statements. A statement ends 
with a semicolon (;) but is otherwise free-form, starting and ending in any column.  
 The C arithmetic operators used by SIGMA include addition (+), subtraction (-), multiplication (*), and 
division (/). C has a short-hand notation that is popular but redundant. In this notation, the statement X=X+7 might be 
written X+=7 and the statement X=X+1 might be written simply as X++. This short-hand is irritating to people new to C, 
but in general people like it once it is familiar. The power operator (^) used in SIGMA does not exist in C; the function, 
pow(), is used instead. Relational operators for comparing two expressions include greater than (>), less than (<), 
greater than or equal to (>=), less than or equal to (<=), equal to (==), and not equal to (!=). Boolean logical operators 
in C are "&&" (and) and "¦¦" (or). 
 As in SIGMA, there are "side effects" to using functions to test edge conditions. For compound edge conditions 
using Boolean "and" operators, many C compilers will evaluate only until the first false condition is found. SIGMA, on 
the other hand, will evaluate all conditions before anding. For example if you have an edge condition 
(Q>0&PUT{LINE;FST}) in SIGMA, the PUT function will always be executed. This condition translates to C as 
(Q>0&&PUT(LINE,FST)), and the PUT function may only be executed if Q>0, depending on which C compiler you use. 
 C has bit operators which are not used by SIGMA. Note that in SIGMA, Boolean "and" and "or" operators are & 
and | respectively, which are bitwise operators in C. In C, ^ denotes the "exclusive or" bitwise operator.  
 
B.6 Directives 
 

Lines that start with a pound sign (#) are called directives. Some examples of directives are:  
 

#include sigmalib.h /*insert the code in the header file, sigmalib.h, 
in your default directory*/  

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

212 

#include <stdio.h> /*insert the file stdio.h from the include 
subdirectory of your C compiler*/ 

 
#define TRUE 1 * /define the constant TRUE to be equal to the 

integer 1*/ 
 
#if defined MSDOS  /*if there is an environment variable called MSDOS 

defined execute the code until an #endif directive 
is reached*/ 

 
#define SIN(a) (sin(a)) /*define the upper case function SIN(a) to be 

equivalent to the standard C function sin(a) with 
the same argument*/ 

Substitutions indicated by directives are executed in the first phase of compilation. Directives statements do not end 
in semicolons.  

 
B.7 Sequencing or Branching 
 

The sequence of statement execution can be controlled in several ways. The most common is the if-else construct 
which has the following format: 
 

if(condition) 
 { 

/* execute this block of code if the condition is true (not equal to 
zero)*/ 

 comments, statements and function calls 
 } 
else 
 { 
 /* execute this block of code if the condition is false (equal to 
zero)*/ 
 block of code 
 } 

It is common to nest if-else statements within other if and else blocks of code. Another common flow control 
statement is the switch-case with the following format: 
 

switch(expression) 
 { 
 case 1: 
  block of code 
  break; 
 case 2: 
  block of code 
  break; 
 ... 
 case constant_expression: 
  block of code 
  break; 
 default: 
  block of code 
  break; 
 } 

 
The block of code following the case equal to the switch argument is executed until a break is hit. For example, if the 
expression in the switch evaluates to the integer 6, only the code following case 6: is executed. The key word, break, 
prevents the execution of statements following the next case. C also has the goto statement, but this is very rarely used. 
 
B.8 Iteration (looping) 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

213 

 
To iterate a block of code several times, C provides the for and the do-while constructs. The for construct looks like 
this 
 

for(starting_expression; ending_condition; looping _expression)  
 { 
 block of code 
 } 

 
This will execute the block of code if the condition expression is true, beginning with the execution of the starting 
expression and executing the looping expression each time until the condition expression is false. For example, the 
statement: 
 

for(index=1;  index<6; index=index+1) 
 {block of code} 
 

will execute the block of code starting with index equal to 1 and increase the index by 1 for each loop as long as the index 
is less than 6. (Loop is not executed with index equal to 6). 
 The forms of while and do-while statements are  

 
 
while(expression) {block of code} 
 

and 
 

do {block of code} while (expression) 
 

In each case if the expression is true, the block of code continues to be executed (unless a break is hit). In the while 
format, the expression is tested before the block of code is executed, and in the do-while format the expression is 
executed after the block of code is executed. In each case, a break; will exit the loop and a continue; will pass control 
to the next iteration. 
 
B.9 Organization 
 
The typical main C program skeleton is as follows: 
 

directives (lines beginning with #). 
global variable declarations 
function definitions  
main() 
 { 
 local variable declarations, comments, statements, 
 and function calls 
... 
 } 

 

Typical C functions have the following skeletons 
 

function_return_type  function name (list of parameters) 
 parameter declarations 
 { 
 declarations, comments, statements and function calls 
 } 

The default type of value returned by a function is an integer. (A "void" type function does not return any value.) 
 
B.10 Input and Output 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

214 

 
In C, output is commonly done with a standard C function such as,  
 

printf("format control string", list of variables); 
 

This will cause the variables in the list to be printed in the default output device (typically the screen). The format control 
string dictates how the variables are to be printed. 
 The control string may contain ordinary characters and conversion specifications (preceded by a percent sign, %).  
Common conversion specifications are: 
 

%s  -  print as a character string 
%f  -  print as a floating point number 
%d  -  print as an decimal integer 

 
Optional field specifications can also be included: %20.10s indicates that the field should be at least 20 characters wide, 
and 10 characters should be printed with right justification. %-20.10s will also print 10 characters in a field at least 20 
characters wide but with left justification. Printing control characters can also be placed in the format control string, such 
as \n (end of line) and \t (tab). To illustrate, if val is a floating point number currently at 6.57643, i is an integer with a 
value of 3, and name is a string with value "profit", the statement 
 

printf("The %s for quarter, %d, = $%-5.2f\n", name,i,val); 
 
should result in the line 
 

The profit for quarter, 3 = $6.57 
 
being printed on the default output device. 
 Data is typically input into a C program using a standard library function such as 
 

scanf("format string", pointers to variable addresses); 
 
The format conversion string is similar to the printf statement. Since function arguments in C are passed by value not 
reference, it is important that the values of pointers to the addresses of variables being read in are given and not the names 
of the variables themselves; 
 

scanf("%d",i); 
 
would not read in a value for the variable, i; however, 
 

scanf(%d, &i); 
 
would. Placing the character & in front of a variable name indicates that we mean a pointer to the address of the variable. 
Examples of the printf and scanf functions can be seen when prompts for input are given in the simulation, 
CARWASH.C, on your SIGMA disk. 
 
B.11 Referencing Disk Files 
 
Files on your disk can be read from and written to using file pointers with standard C library functions. You need to 
define the special data type FILE and assign pointers to files of this type, e.g., 
 

FILE *i_file, *o_file;   /*pointers to files */ 
 
 
Files also need to be opened and closed using the fopen and fclose statements like, 
 

i_file = fopen("input.dat","r");  /*open input.dat to read*/ 
o_file = fopen("output.dat","w"); /*opens output.dat to write*/ 

 

and 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

215 

 

fclose(i_file); 
fclose(o_file); 

 
 An example of a function that reads data from a disk file, ROUTES.DAT, and echoes to the screen is the following 
INPUT function: 
 

/*** READING ROUTES FROM DISK ***/ 
void INPUT() 
{ 
FILE *fp; /*declare a file pointer for DISK input*/ 
int i, route[18]; /*index for reading data and the route*/ 
 
/*open the DISK file in read-only mode*/ 
fp = fopen("routes.dat","r"); 
/* loop to read 17 values from the disk file*/ 
 for(i=0; i<17; i++) 
 { 
 fscanf(fp,"%d",&route[i]);  /* read the data */ 
 printf("route[%d]=%d\n",i,route[i]);/*echo to screen*/ 
 } 
fclose(fp); /*close the DISK file*/ 
} 

 

 It is strongly recommended that you replace the SIGMA DISK{} function with fscanf calls unless you are using 
some of the very special features of the DISK function. 
 
B.12 Redefining Standard Input or Output Devices 
 
When a C program is executed, the default input and output devices (the screen and keyboard) can be changed to any 
devices you want by using the < and > conventions. This is best illustrated with an example. You have an executable C 
program, TEST.EXE, on your A: drive whose input usually comes from the keyboard and whose output usually goes to the 
screen. To run this program with these default input and output devices you simply enter, a:test. 
 Now suppose that you want to read the input from a disk file named INPUT.DAT on your C: drive and you want 
the output to be written to the file, OUTPUT.DAT, on your C: drive , you execute the program by entering 
 

a:test      <c:input.dat      >c:output.dat 
 
The < indicates where the keyboard input will be coming from and the > indicates where the screen output will be written. 
This is useful in batching runs of a simulation where different input data and output files are desired for each replication. 
Be careful about redirecting the input; if the program needs information not in the specified file, you may have to reboot 
to use the keyboard. 
 
B.13 Arrays, Pointers, and Data Structures 
 
C has several features that are not exploited by SIGMA, including data structures and pointers. Pointers are variables 
whose values are the addresses in memory where data is located. The type of pointer (int, char, etc.) tells you how many 
bytes in memory are in the block of memory to which the pointer is pointing. (Pointers to functions are used in the support 
library, SIGMALIB.LIB, but you do not need to know about these to read the SIGMA-Generated C code.) A pointer is 
identified by having an asterisk (*) before the variable name. The operator, &, gives the address in memory of an object.  
If your program has the following declarations: 

 
int var; /* var is some integer variable */ 
int *p; /* p is a pointer to the address of an integer */ 
 

to have "p point to a", you can write, 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

216 

p = &var; /* assigns the address of var to the pointer p */ 
 
and you can  increase the value of var by 5 with either 
 

var = var + 5;   
or   

*p = *p + 5 
 
Pointers are particularly useful in simulations when they are used to point to structures. 
 This brief introduction is not intended to give you a complete background to the use of structures and pointers 
but merely to give you some indication of their power. Hopefully, you will be encouraged to learn more about structures 
and pointers and use them in your models. A data structure can be thought of as the complement of a data array. Where an 
array gives you the value of a single variable when you specify one or more indices, a structure gives you one or more 
values for variables when you specify a single index (in the form of a pointer). An array can be used to represent many-to-
one relationship and structures to represent one-to-many relationship. 
 Data structures can be used in simulations as records of information that pertain to a particular entity, i.e., school 
records for a group of students. Setting up data structures is useful when you need to keep track of many characteristics of 
an entity in your simulation model. Suppose you are simulating a factory and you want to keep track of each job's type, 
current task, location, start-time, routing, and time the job will take on each of several machines. If you assign a unique 
job identification number to each job in the system, you might use several arrays like we did in the SIGMA queueing 
network models discussed earlier. For each job, you could keep its type, current task, x-y coordinates of its location, and 
the time it was started in a collection of arrays like TYPE[JOB], TASK[JOB], LOCATION[JOB;2], and 
START_TIME[JOB]. You could also have numbers representing the machine needed for each processing task for each job 
type in a table represented by the nested arrays, ROUTE[TASK[JOB];TYPE[JOB]]. The two-dimensional array ROUTE[] is 
an example of a two-to-one relationship; you specify two values, TASK and TYPE, and get one value of the machine 
number. 
 What we really want is to access many items of information about a single job, a one-to-many relationship. This 
is what a data structure does. A data structure set up to contain the relevant information for each job might look like the 
following in C. 
 

struct tag { 
int type; 
int task; 
float x_location; 
float y_location; 
float start_time; 
int *route; 
}job; 

 
 
You can also use structures within other structures. To reference an element of a structure you use a period, e.g., if( 
job.task==2) would test if the current task of a specific job was equal to 2. 
 Then an array of pointers to job records could be set up as 
 

struct tag *job; 
 
If we want to assign to the variable, t, the time of job 8 and x and y to its location, we could use the statements  
 

struct tag *job; 
t=job[8]->type; 
x=job[8]->x_location; 
y=job[8]->y_location; 

 
An general-purpose structure called an Entity is defined in SIGMALIB.H. This is an array of pointers to linked lists of 
arrays; it is used to model transient entities, queues, etc. Memory for new entities is dynamically allocated as they are 
created. Memory is freed when entities are removed from lists. The Entity structure is defined as follows in C: 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

217 

 
/* The Entity data type is a double-linked list */ 
/* S_MAXLIST lists have S_MAXATRIB elements in each entry*/ 
 
typedef struct entity{ 
struct entity 
 *prev, /* pointer to previous entity on list */ 
 *next; /* pointer to next entity on list */ 
float attrib[S_MAXATRIB]; /* attribute list for this entity */ 
} Entity; 
 
/* Set up Arrays of Pointers to Linked Lists of attribs */ 
Entity *head[S_MAXLISTS], *tail[S_MAXLISTS]; 
 
 

 You do not need to know about the ENTITY structure to use SIGMA, but it is useful if you understand it. This 
structure is a reasonable test of your comprehension of C.  
 
 
 
 
 
B.14 Structure of SIGMA-Generated C Simulations 
 
The C code generated by SIGMA has a very elementary structure. It also contains extensive comments. In fact, your 
descriptions of variables, vertices, and edges appear right in the C source code (in upper-case letters). You should look at 
a SIGMA-generated C simulation (e.g., CARWASH.C) while we discuss the different elements of the program. 
 The program starts with comments that tell the model run defaults that were in effect when the SIGMA event 
graph was translated to C. This gives you a quick look at the events and variables that are being traced during the run (you 
can, of course, easily change this in the C code). This is followed by the two #include directives that insert the function 
definitions and variable definitions into your code from two header files, with the code, 
 

#include "sigmalib.h" 
#include "sigmafns.h" 

 

Do not change these files. 
 The program next lists the event functions and state variables for your model; as in SIGMA, these are global 
variables. If you want, you can add local variables to the functions for each event or you can create additional global 
variables, say, for statistics gathering. This is followed by the main() function in your program. 
 The main() program initializes the variables and files in your model by calling the initialize() function, 
which appears after the main() function. The initialize() function looks for an *.exp file with the inputs for 
experiments you wish to run (discussed later).  If it does not find such a file, it prompts you for an output file, a random 
number seed, stopping conditions, and initial values of the attributes for your first vertex. (Values for these attributes were 
needed in the Run Options dialog box to initialize your run in SIGMA.) 
 The main() function next schedules the beginning and end of the simulation run. The stopping conditions for 
your C simulation will match the choice you made for stopping your SIGMA event graph that generated this model. You 
should look at the C code generated from event graphs that have run options that specify stopping after a specific time 
(Stop on Time) or after a specific number of occurrences of some event (Stop on Event). Next, the start of your 
run is scheduled and the event execution loop is begun. This loop looks like the following 
 

while (!run_error)  
{ 
/* Pull next event from event list */ 
next_event = c_timing(); 
event_count[next_event]++; 
/* Call appropriate event routine */ 
switch ( next_event )  

{ 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

218 

case 0: run_end(); 
 break; 
case 1: RUN(); 
 event_trace("RUN",event_count[next_event]); 
 break; 
case 2: ENTER(); 
 event_trace("ENTER",event_count[next_event]); 
 break; 
case 3: START(); 
 event_trace("START",event_count[next_event]); 
 break; 
case 4: LEAVE(); 
 event_trace("LEAVE",event_count[next_event]); 
} 

} 
 

The event execution loop is a WHILE loop that runs as long as there is no run error. The run_error flag is set if there is 
an error during execution; otherwise, this loop will continue until a run error occurs or the run_end() function is 
executed. The event execution sequence follows the event execution outline given in Appendix A. The sequence is:  
 

1. Find the event number for the next event and advance the simulation clock (called current_time) using 
the c_timing() library routine in SIGMALIB.C. 

2. Increment the event_count for the next event by one. 
3. Execute a switch on the next event causing the appropriate event function to be called. If the event is to 

be traced, the event_trace() function is also executed. 
4. The while loop returns to find the next event unless the run_end() function has executed or the 

run_error flag has been set. 
 

 The event_trace() function simply prints out the traced variable values in the same format used by SIGMA. 
You should be careful not to trace too many variables as this might make your output line too long for your compiler. 
Also, you should be careful not to trace too many vertices since this also might make your output file too long. In running 
a C simulation, most of your execution time typically is used in writing data to the output file in the event_trace() 
function. 
 

Hint: Replacing the event_trace() function with some data collection variables and arrays will speed up 
execution of your simulation considerably. 

 
 Elements of the transfer[] array (called ENT[] in SIGMA) are used as temporary storage buffers for the 
values to be placed on lists. Note that in the SIGMALIB.H file, elements 0,1, and 2 of the transfer array are redefined 
to equal the event_time, event_type and event_priority respectively. Also, in SIGMALIB.H, the general list filing 
function, c_file(), is renamed schedule_event(). These name changes in the SIGMALIB.H file are intended to make 
the SIGMA-generated C simulations more readable; they have no other effect. 
 The remainder of your simulation is made up of functions for ending the run (run_end()) followed by functions 
for each of the events in your simulation. For each vertex in your SIGMA graph there is an event function. The event 
functions have the following structure: 
 

1. The description you gave for the vertex in your event graph model. 
2. Definitions of some local variables for testing edge conditions (and any local variables you might want to 

add). 
3. Assignment of values (from the transfer array filled in from the future events list) to the parameters for 

this vertex. 
4. Execution of the vertex state changes. 
5. Testing of conditions for all exiting edges. 
6. Schedule (or cancel) destination vertices for the edges with conditions that test true by: 

(a) Setting elements of the transfer[] array to the values of attribute expressions for the edge. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

219 

(b) Setting the event type, event time, and execution priority for the destination vertex of this edge. 
(c) Scheduling the event onto the list of future events using the schedule_event() function.   

 
B.15 Compiling Simulations with Microsoft C 
 
In Section 11.What follows are the details for a simple four-step procedure for compiling and running the automatically-
generated C code for your SIGMA simulation. (You can skip these details and go to Section 11.2.3. and use the two-step 
procedure with the template in the subfolder, CompileInCTemplate.) This is followed by two steps for setting up an 
experimental design file. Your model then will run thousands of times faster, and multiple-run experiments can be 
batched into a single execution. Only Microsoft VisualC++(6.0) compiler (MSVC++) is used. The model, 
CARWASH.MOD, is our running example. You can then configure your model, design experiments, and run your 
simulation from a spreadsheet. (See the section on using an EXCEL interface for a SIGMA simulation.) 
 
Microsoft VisualC++(6.0) compiler (MSVC++) is used. The model, CARWASH.MOD, is our running example. You can 
then configure your model, design experiments, and run your simulation from a spreadsheet. (See the section on using an 
EXCEL interface for a SIGMA simulation.) 
 
NOTES: While SIGMA initializes all variables to zero, C does not. All values not otherwise computed in your model 
should be explicitly initialized to zero before generating C code. You should also uncheck the trace flags in all event 
vertex dialogs you do not want to appear in your output.  

1) Create a Project: In MSVC++, you first need to build a Project Workspace before you can compile your 
simulation. Even if you have all of your code correct, MSVC++ will have no idea what to do with it until you define 
a workspace.  

To start, open MSVC Developer's Studio and go to the “File” menu and select “New”. You should see a dialog box listing 
the different objects you can start. Select “Project Workspace" and hit the [Enter] key. The following dialog box should 
appear.  

 

We are going to create a "Console Application" which can be run alone, attached to a spreadsheet, or used to run a 
series of experiments. Select “Console Application”.  
 
 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

220 

 Give your project a name in the “Project name” field (this will be the name of the executable program you will be 
creating). 
  
In the “Location” field, pick a directory on the hard drive (NOT your floppy disk, unless you want to die of old age 
waiting for it to compile). Note that MSVC will create a sub-folder in this directory with your project name.  Click 
[OK]. 
 
 

In the next dialog make sure that "Empty Application" is checked and click [Finish] and confirm 
with [OK] in the confirmation dialog. 
 
 

2) Add Files to Your Project: It is a good idea to copy all of the files you need, SIGMALIB.H, SIGMAFNS.H, and 
SIGMALIB.LIB, as well as the FILENAME.C that SIGMA has created into your project directory. This avoids the 
necessity of searching around for file and library paths. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

221 

Select the “Project” menu command and select “Add Files”. A dialog box like the following will pop up.   
 

 

Under Files of type, select "All Files (*.*) and then (holding the Ctrl key) select your model (here, CARWASH.C) 
along with the three files SIGMAFNS.H, SIGMALIB.H, and SIGMALIB.LIB; press [OK]. 

 

IMPORTANT: You need to turn off one of the features in Microsoft Developer Studio - the precompiled headers. 
Select the Project/Settings menu item and the C/C++ tab. Under Category: select Precompiled Headers and check 
"Not using precompiled Headers. The dialog should look like the following when you click[OK]. 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

222 

There should be a section of the Developer Studio window that looks like the following.  Clicking on the “+” will 
expand the project tree and allow you to look at the different files in the project.  Double-clicking on any file will 
open it up in an editing window so you can view/edit it. 
 

 

3) Build Your Model: After you have finished all the editing necessary, you can now compile the program. To do 
this, go to the Build menu and select "Build CARWASH.EXE". 

 

4) Check Program Logic: Did it work with no errors? If so, go to the experiment file material below. No? Don’t get 
discouraged; few compile their programs properly the first time. Check the debug area (probably located at the 
bottom of the window) for error messages. “Warnings” can be ignored for now—it’s the errors that keep the machine 
from compiling your program…actually, some warnings may be intentional (e.g. casting doubles as long, etc.). 
Double-clicking on the errors will either take you to the offending code or give you (a little) more information about 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

223 

Debugging Function Keys: 
 F9:  Insert/delete breakpoint at cursor 
 F5:  Run to next breakpoint 
 F10: Step over a block of code 
 F11: Step into a block of code 
 Shift-F11:  Step out of a block of code 

the cause. Selecting an error message and pressing F1 will bring up the Microsoft help file for the error - don't get too 
hopeful as these error messages may not be meaningful.  

Edit your code as necessary and continue build attempts until it works. Using the debugger is really helpful in this 
part of the process, so don’t be afraid to use it. When MSVC++ reports “ 0 error(s)-n warning(s)”, you’re good to go. 

 

 

 

 

 

 

5) Run Your Model: Open the directory you are using, or use Windows Explorer's tools/find feature. You should see 
a bunch of files as well as your prize: (here: CARWASH.EXE). This is the file you can run. If, for instance, you have 
compiled a SIGMA model, the interface will ask for input and create an output file. This file (say, CARWASH.OUT) 
contains the event list for your run which can be read directly into an Excel spreadsheet for analysis. 

6) Create Experiment Files: When you want to make multiple runs of your compiled simulation, it is usually a good 
idea to write an experiment file. This is covered in Section 11.3.  

 
 
B.16  C Library Functions  
 
The proprietary library for the functions that are needed to run your SIGMA simulations are in a file called 
SIGMALIB.LIB. It is illegal to link this library to a model without a Professional license. The functions in this library are 
grouped into different sets according to their purposes in the header SIGMAFNS.H. The library is compiled using 
Microsoft Visual C/C++ Version 6.0. Size limits on objects in the library are documented in SIGMALIB.H. 
 
 
B.17 Incompatibilities between C and SIGMA 
 
Power function: The SIGMA power operator (^) does not exist in C. (In C, ^ is one of several bitwise operators). Your 
C compiler probably has a power function in its library, called pow(x,y), which you should use to replace x^y in your 
SIGMA generated C code.  
 
DISK input: The indexed access of the SIGMA DISK function to specific items of data is not standard. You will probably 
want to use the standard C library input functions, scanf() and fscanf() that are discussed in this appendix in Sections B10 
and B11 since they are much faster for reading input files sequentially than the SIGMA DISK Function. Comment lines 
and expressions are not evaluated like in SIGMA and must be removed. 
 
CGET function: If you use the CGET function in SIGMA, then the translation to C looks like the following for, say, the 
condition, (ENT[0]>30&&ENT[2]>=2&&X>=3) 
 

    QUEUE=QUEUE-CGET((ENT[0]>30&&ENT[2]>=2&&X>=3),1); 
 

To have this work in C you need to make the following 2 changes to your C code for each use of CGET: 
 

1. First change the above line of code in the Sigma-generated C code to  
 

QUEUE=QUEUE-CGET(pfCondition1,1); 
 
             (Here pfCondition1 is any valid C function name you want.) 
 

2. Then add function(s), returning the condition(s), immediately before main() 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

224 

 
/* FUNCTIONS FOR CONDITIONAL GETs*/ 
int    pfCondition1(); 
int pfCondition1() 
{ 
 return (ENT[0]>30&&ENT[2]>=2&&X>=3); 
} 
 
/*    MAIN PROGRAM     */ 

This function, called pfCondition1(), simply returns the condition as 1 (true) or 0 (false). This is an exact cut and paste of 
the condition from the original CGET to the return( ).  

 
B.18 Replacing the Default Random Number Generator with a Multiple Stream Generator 
 
As better, faster, or more flexible pseudo-random number generation codes are developed, they can be easily included in 
your SIGMA generated simulation engines. This section gives a detailed example for doing this. In this example, we will 
assume that you wish to use 6 different random number streams in your simulation model. See Chapter 9 for some reasons 
why you might be interested in using multiple streams in a simulation. 
     You first need to download the random number generator software you wish to use and add it to your C workspace. To 
illustrate, we will use RngStream.c and RngStream.h by Pierre L’Ecuyer available at the web site 
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/.   Both these files will need to be added to your C workspace.  
 
Make four simple changes to your SIGMA-generated C code 

1. Add the following line after #include "sigmalib.h" 
 #include "RngStream.h" 
 
2. Define i and seed[ ] in initialize(int argc, const char** argv) by adding the following 
two lines after char y_n[2] = 'p';/* yes/no for file overwrite*/ 
           int i; 
           unsigned long seed[6]; 
 
3.. Initialize functions in RngStream.c (also in initialize( ))   
   /* PLACE CUSTOMIZED INITIALIZATIONS HERE */ 
 for (i=0;i<6;i++) 
  seed[i]=rndsd; 
 
 for (i=0;i<numstreams; i++){ 
  //Create stream i 
  stream[i] = RngStream_CreateStream(""); 
  //RngStream_SetPackageSeed (unsigned long seed[6]); 
  RngStream_SetPackageSeed(seed); 
 
  //Reinitialize stream i to the beginning of its next substream 
  //rngstream_resetnextsubstream(stream[i]); 
 
  //Can generate antithetic variates (1=1-U, 0=U) 
  //rngstream_setantithetic(stream[i], 0); 
 
  //Increased precision (0=32 bit, 1=53 bits) 
  //rngstream_increasedprecis(stream[i],1); 
       } 
 
4. In the  /* EVENT FUNCTIONS */  Replace RND with RngStream_RandU01(stream[1]) (or other 
functions for as antithetic streams, etc.) everywhere in the event codes.  For example, if Sigma generates the 
following line of code 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

225 

    event_time = current_time + 3+5*RND; 
replace it with      
    event_time = current_time + 3+5*RngStream_RandU01(stream[1]); 

 
Finally, add the following code to the bottom of sigmalib.h, where numstreams is the number of different streams you 
wish to use in your simulation.  

//Multiple random number streams 
#include "RngStream.h" 
#define numstreams 6 
RngStream stream[numstreams]; 
 

Now you compile and link these programs to create your simulation engine as before. If you use the compiling template 
provided for Microsoft Visual C/C++, just double-click on mysigmasimulation.dsw and press F7 to create an executable 
program of your SIGMA simulation engine. Your simulation engine will again be called MySigmasimulation.exe and is 
in the debug subfolder. You can now rename it anything you wish and include in a spreadsheet or web site – or double 
click it to run it.  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

226 

 
Appendix C 

 

Overview of Visual Basic for Applications2 
This appendix will acquaint you with Visual Basic for Applications. Like all flavors of Visual Basic, VBA is large and 
dynamic. People are creating new and useful VBA objects and codes all the time. You do not “learn” VBA in the 
conventional sense, you become acquainted with it’s fundamentals. Then you can use and share coded objects with a vast 
number of VBA users and programmers. The programs used for the tutorial are carwash.exe and carwash.xls both in the 
file carwash.zip. 

 After a quick introduction to VBA showing the basics for creating an Excel User Interface for your Model, the 
following topics are covered.  

1.0 Introduction to VBA 
 
2.0 Event Driven Programming and Excel's Object Model 
 
3.0 Variables 
 
4.0 Procedures and Functions 
 
5.0 Debugging and the Visual Basic Editor 
 

 
Quick Overview: Creating an Excel User Interface for your Model 

 
This mini tutorial will show you how to create a simple user interface for your model in Excel. I will 
be using CAEWASH.MOD for the examples, but you can use any model that you would like. You 
must have a compiled version of your model that functions and this tutorial is not going to cover 
creating DAT files, so you would be better off using a model that does not require one. To make 
things easier, we will start off with this Excel file (click for a larger view) that already has an area to 
input data that would normally go into a EXP file. Our interface will be very basic, users will enter 
data just like they would in a EXP file, and output will just go into some XLS files. In order to 
complete this tutorial, you must have CARWASH.EXE in the same directory as CARWASH.XLS 
and you must have WRITE/MODIFY access to that directory. 

Creating the EXP file 
Our first step will be to transform the users input in Excel into a EXP file (a plain text file). Lets go 
ahead an add a code module to our carwash.xls file (if you are not familiar with code modules, you 

 
2 This appendix was originally written by Arlen Khodadadi while he was a student at Berkeley. 

javascript:OpenBigPic('Pics/MTp1b.gif',%20345,%20700);


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

227 

need to go back and read this). First thing we will do in our new module is declare a procedure name 
CreateEXPFile and declare some variables. Don't worry to much about what the variable 
declarations mean for now, we are just basically telling the computer we want to store some values 
that will be changing as our program runs. Enter in the following code: 

 
Sub CreateEXPFile() 
 
Dim strPath As String 
Dim oFS As Object 
Dim oExpFile As Object 
Dim strExpFile As String 
Dim shtMain As Worksheet 
Dim rngEXPData As Range 
Dim iRow As Integer 
 
End Sub 
 

These variables will be explained as they are used.  

The FileSystemObject 
In order to create an EXP file, we must be able to create a text file on the computers hard drive. Excel 
does not have this capabilities built in (well, it does, but its not very good at it). For this reason, we 
are going to use the FileSystemObject. This object is not part of Excel, but rather it is part of the 
Windows Scripting Host. Anyway, through the magic of COM, we are able to access the FSO from 
VBA. The following code will create an instance of the FSO, and allow us to use it to create files 
later. 

Set oFS = CreateObject("Scripting.FileSystemObject") 

Now, in order to create a file, we need to know where to store it. We are going to ask Excel for the 
path of our current file and use that to create the full path name of our EXP file. Enter the following 
line into you module: 

strPath = ThisWorkbook.Path 
strExpFile = strPath & "\CARWASH.EXP" 

All we are doing here is getting the Path property of the ThisWorkbook objects and using that to get a 
full path for our EXP file. You will notice in the second line that we can append to strings together 
with the & operator. So if strPath = "C:\Sigma", strExpFile would be 
"C:\Sigma\CARWASH.MOD". To create the file itself, we will use this code (the true passed to this 
method tells the FSO to overwrite the EXP file if it already exists). 

Set oExpFile = oFS.CreateTextFile(strExpFile, True) 

We have now asked the FSO to create a text file for us and store a reference to that file in our 
oExpFile variable. You may have noticed that some of these variable assignments require a Set 
before the variable name while others do not. When assigning a value to a simple variable (such as an 
integer or string) you do not need to use Set. When dealing with objects, however, you must always 
use Set or VBA will complain. This has to do with the fact that objects each implement the 

http://www.microsoft.com/com/tech/com.asp


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

228 

assignment operator (the = sign) in a different method. Again, this is note something you have to fully 
grasp, but just be aware of this subtlety. 

So now we have a file open and we can start writing to it. 

Writing to Our EXP File 
Eventhough in our contrived example we know exactly how many runs will be in our EXP file (4), 
we are going to pretend that the use could have entered as many as he or she wanted. In order to 
process the user input, we must know how to access it. The following lines do just that; the first line 
sets our shtMain variable to point to the Sheet1 worksheet object. From now on in our code, if 
we want to access a property or method of Sheet1, we can simply use our variable shtMain 
instead. The second line of code sets our variable rngEXPData to a Range object on shtMain. A 
range object is simply a set of cells on a given worksheet. In this instance, our rngEXPData 
variable will reference cell B4 on Sheet1. While it is not necessary to have variables to reference cells 
like this (we could, for example, simply refer to Worksheets("Sheet1").Range("B4") the 
rest of the program), it is a good habit to get into. This way if we ever decide that we want to rename 
our sheet, or move the table to cell C6, we will only have to change one or two lines of code instead 
of hunting down every reference to Worksheets("Sheet1").Range("B4"). 

Set shtMain = Worksheets("Sheet1") 
Set rngEXPData = shtMain.Range("B4") 

We can now actually put values in our EXP file. To achieve this, we will start entering the data that 
appears on the B4 line (the first line for data entry) and continue on to subsequent lines until we hit a 
blank line. The code to accomplish this is as follows: 

iRow = 0 
While (rngEXPData.Offset(iRow, 0).Value <> "") 
    oExpFile.Write rngEXPData.Offset(iRow, 1) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 2) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 3) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 4) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 5) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 6) & vbNewLine 
    iRow = iRow + 1 
Wend 

This code uses a While statement to check for empty cells. Basically a while statement checks its 
condition and if it is true, executes the code between the While statement and the Wend. After going 
through the code, the while statement tests its condition again and repeats the process until its 
condition is false (if the condition is false from the beginning, the code in-betweenWhile and Wend 
will never execute). In this example we are checking to see if rngEXPData.Offset(iRow, 
0).Value <> "" is true. Now you now rngEXPData is a Range object, so you might be 
wondering what the Offset method of a range object does. As its name implies, the offset method 
simply returns a reference to the Range that is offset from itself by a certain number of rows and/or 
columns. The basic syntax is RangeObject.Offset(RowOffset, ColOffset). For 
instance, Range("A1").Offset(1,1) would point to Range("B2"). 

Here our main while loop is offsettingrngEXPData by iRows and checking if this value is empty 
(two quotation marks such as "" indicate an empty value). Everytime we go through the loop 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

229 

(meaning that rngEXPData.Offset(iRow, 0) is not blank) we use the Write method of 
oExpFile. The Write method of a file object just writes its argument to the file. So whenever a line 
is not blank, we will write 6 columns of that line to our EXP file (we don't care about the run number 
as that does not go into our EXP file). These 6 columns correspond to columns C through H on our 
Excel sheet. We could have used another While loop to make the code a little cleaner and more 
efficient, but this method is easier to understand. Note that we are appending a single space to the end 
of the first 5 columns we insert into our EXP file. If we did not, VBA would simply write all 6 
columns as one big word and our model would not be able to distinguish the different values in our 
file. Likewise, on the last line of output, we append the vbNewLine constant to our output. VBA 
defines a plethora of constants to simplify our lives, this particular constant is quite useful and tells 
the Write method to end the line after we put 6 columns of data on it. 

The final line before Wend, iRow = iRow + 1, just increments iRow by one so that the next time 
the While loop checks its condition, it will be looking at a new line. This way, we keep moving down 
the page until we run into an empty line. Unlike C/C++, VBA does not have shortcut incremental 
operators such as iRow++ or iRow += 1. 

The Wend line just tells us that our While loop is over. 

Now that we are done outputting our file, we can get rid of our FSO object with this code: 
oExpFile.Close 
Set oExpFile = Nothing 
Set oFS = Nothing 

Don't get bogged down in the details, all we are doing here is telling VBA that we are done with the 
FileSystemObject we were using. As mentioned earlier, the FSO is not part of Excel, so it takes quiet 
a bit of computer memory for VBA to handle communication with this "out-of-process" component, 
which means that as long as Excel thinks we will need this object, it will allocate memory for it. So 
whenever you are done using the FSO or any other object not built into Excel, you should explicitly 
tell Excel you are done with it by setting the variables equal to nothing. Our CreateEXPFile 
procedure is now done and it should look something like this: 

 
Sub CreateEXPFile() 
 
 
Dim strPath As String 
Dim oFS As Object 
Dim oExpFile As Object 
Dim strExpFile As String 
Dim shtMain As Worksheet 
Dim rngEXPData As Range 
Dim iRow As Integer 
 
 
Set oFS = CreateObject("Scripting.FileSystemObject") 
strPath = ThisWorkbook.Path 
strExpFile = strPath & "\CARWASH.EXP" 
Set oExpFile = oFS.CreateTextFile(strExpFile, True) 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

230 

 
Set shtMain = Worksheets("Sheet1") 
Set rngEXPData = shtMain.Range("B4") 
 
iRow = 0 
While (rngEXPData.Offset(iRow, 0).Value <> "") 
    oExpFile.Write rngEXPData.Offset(iRow, 1) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 2) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 3) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 4) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 5) & " " 
    oExpFile.Write rngEXPData.Offset(iRow, 6) & vbNewLine 
    iRow = iRow + 1 
Wend 
 
oExpFile.Close 
Set oExpFile = Nothing 
Set oFS = Nothing 
End Sub 

Executing Our Model 
Once our EXP file is created, all we have to do is run our model. To do this, we will create another 
procedure, this time named ExecuteModel. The code for this procedure is much shorter and simpler: 

Sub ExecuteModel() 
Dim strCommand As String 
Dim strPath As String 
strPath = ThisWorkbook.Path 
strCommand = strPath & "\CARWASH.EXE" 
Shell strCommand, vbNormalFocus 
End Sub 

Like in our last module, we are taking our current files path (this is where we assume our model file 
is) and creating a full path for our compiled code (assumed to be CARWASH.EXE). The shell 
command is a VBA command to execute a DOS command. You will notice the use of another VBA 
constant for this command to tell Shell to open up this window to its normal size. The VBE should 
give you the other options for this argument after you type the comma after strCommand. 

Starting Our Model 
Now that most of the code is done, we are going to make one more simple procedure name 
StartModel. This procedure will simply call the other two and the code is as follows: 

Sub StartModel() 
CreateEXPFile 
ExecuteModel 
End Sub 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

231 

 
Now we just need a way for users to run this macro without having to go through the Macros menu. 
To do this, we are going to create a button on Sheet1 to run this macro. Open the forms toolbar by 
going to View -> Toolbars -> Forms and you should see a toolbar like the one to the right. The 
second to the top button on the right hand side will let you create a Button on your sheet. Click this 
button and then click and drag to draw a button on your form. As soon as you release your mouse 
button, Excel should ask you what macro you would like to link this button to. Select StartModel and 
close up the forms tool bar. Now save this file and you are all done! 

1. Introduction to VBA for Excel 

1.1 What is VBA? 
Visual Basic for Applications (VBA) is Microsoft's common macro language for several different 
applications (including all Office applications as well as other software like Visio). VBA allows users 
to access the objects of its host application (in this case Excel) including sheets, charts, cells, etc. 
VBA (which is the language engine behind Visual Basic) allows users to create full blown 
applications that run on top of Excel. 

1.2 The Visual Basic Editor (VBE) 

 

javascript:OpenBigPic('Pics/chap1-2p1b.png',%20810,%20970);


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

232 

VBA code is entered into Excel through the Visual Basic Editor (VBE). To access the VBE, either 
press ALT-F11 or go to Tools -> Macro -> Visual Basic Editor. As you can see from 
the adjoining picture (click for a larger view), the VBE is broken down into several areas (four by 
default); these areas include:  

 

Project 
Explorer 

Here you can explore the different excel objects in your project. These objects will be covered later and 
include workbooks, worksheets, and modules.  

Properties 
Window 

Here you can view and alter the properties of the currently selected object (in this example, the 
ThisWorkbook object is selected). All objects in Excel have both properties and methods, though we 
won't cover these items until later. 

Code 
Window 

This is the large window on the top right and is where most of the action will take place. Here is were 
you will input any VBA code you wish your application to run. As you can see, the VBE takes care of 
color coding your code to simplify programming. In this example, I was currently working on a function 
to create a histogram for a given set of data. 

Immediate 
Window 

You can enter VBA statements directly into this window and receive an "immediate" response. For 
example, try typing msgbox("This is a test") into this window and press enter 

 
 
1.3 VBA Modules 
You may have noticed that when you opened up your VBE window, the Code Window was blank, or 
not there at all. This will always be the case when you are working with a file that does not contain 
any VBA code yet. So, where do you put your code then? That is were Modules come into play. 

 
Inserting a new module 

 

To insert a new module sheet from the VBE, go to Insert -> Module. Your window should 
now look like this. By default, your new module will be name "Module1" and will go into a newly 
created folder (named, surprisingly enough, Modules). Typically, modules hold four types of 
elements: 

 

Event Handlers: Code that reacts to user actions (like clicking on a button or changing a cell's value).  

 

Subroutines: These bits of code perform some set action.  

Functions: Like a subroutine, but a function can return a single value.  

Declaration: A statement of information you provide to VBA. For instance, you can tell VBA that you will be 
using a variable name SUM to store an integer value.  

These, and other, elements of VBA will be covered later.  

javascript:OpenBigPic('Pics/chap1-3p1b.png',%20730,%20915);


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

233 

1.4 The Macro Recorder 

 
One of the easiest ways to start learning VBA is to let Excel teach your through its Macro Recorder. 
To start the macro record, go to Tools -> Macro -> Record New Macro. You should get a 
prompt similar to the one on the right, just go ahead and click OK. Now you should be returned to 
your normal Excel window, with the exception of a new toolbar with a stop button on it. Now, go to 
sheet1 and follow these steps: 

1. Click on cell "B5" and type 1  

2. In cells B6 to B9, type the numbers 2 through 5  

3. Select cells B5 and B6 and make the font color red by using the font color tool button  

4. Select cells B7 - B9 and make the cell fill color yellow with the fill color button  

5. Hit the stop button on the new macro toolbar  

Your Excel sheet should now look something like this. If you go back to the VBE, you will now see a 
Modules folder in the Project Explorer. Inside this folder, you will should see Module1, open it by 
double clicking on it. Your code should be similar to the code below: 

Sub Macro1() 

' 

' Macro1 Macro 

' Macro recorded 2/17/2001 by Juan Valdez 

' 

 

' 
    Range("B5").Select 
    ActiveCell.FormulaR1C1 = "1" 
    Range("B6").Select 
    ActiveCell.FormulaR1C1 = "2" 
    Range("B7").Select 
    ActiveCell.FormulaR1C1 = "3" 

javascript:OpenBigPic('Pics/chap1-4p2b.gif',%20290,%20340);
javascript:OpenBigPic('Pics/chap1-4p3b.gif',%20290,%20310);
javascript:OpenBigPic('Pics/chap1-4p3b.gif',%20290,%20310);
javascript:OpenBigPic('Pics/chap1-4p4b.png',%20390,%20465);


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

234 

    Range("B8").Select 
    ActiveCell.FormulaR1C1 = "4" 
    Range("B9").Select 
    ActiveCell.FormulaR1C1 = "5" 
    Range("B5:B6").Select 
    Selection.Font.ColorIndex = 3 
    Range("B7:B9").Select 
    With Selection.Interior 
        .ColorIndex = 6 
        .Pattern = xlSolid 
    End With 
End Sub 

Despite the simplicity of this code, there are quite a few important pieces of information to note. 

The first line of the code, Sub Macro1(), tells us that we are defining a subprecedure (or simple, a 
procedure) named Macro1. VBA will allow you to name procedures anything you want, provided 
your name starts with a letter and is not the same as a VBA reserved word. The parenthesis that 
follow Macro1 indicate what type and number of arguments this procedure expects. In programs with 
more than one procedure, there has to be a way that one procedure can pass control to another 
procedure to allow the second procedure to accomplish its task. This is done by one procedure calling 
another. When a procedure (or function for that matter) calls another procedure (or function) it can 
pass this procedure a set of values. Inside these parenthesis is where you would tell VBA that a 
procedure (or function) expects to be passed some values when it is called; in our example, our 
procedure does not expect any parameters to be passed to it. 

The next four or five lines of code (which are in green here) are comments. Comments in VBA start 
with a single apostrophe and continue until the end of the line. Comments do not have to take up a 
whole line, we can have some code followed by a comment on a single line. We can not, however, 
have a comment followed by code on the same line as the VBA compiler would not know that our 
comment ended until it reached the end of the line. Like in any other programming, it is a good idea 
to document your code through the use of comments. 

We are not going to go into much detail about lines of code following the comments just yet. These 
lines use some of Excel's built in objects to accomplish the changes you just made to sheet1. As you 
learn more about VBA, you will realize that the Excel macro recorder actually does a terrible job of 
creating code; these same tasks could be performed much more efficiently in less than half the code. 
Still, the recorder is a very easy and fast way to find out some of the different properties of objects in 
Excel without having to use the help files. 

Speaking of objects, you should note the method of referencing an object's properties (or methods) 
from the code above. For example, the line, ActiveCell.FormulaR1C1 = "1", mean set the 
FormulaR1C1 property of the ActiveCell object equal to 1. Notice how the object 
(ActiveCell) and the property (FormulaR1C1) are separated by a dot. This dot notation for 
accessing properties or member functions (method) is quite common and is used in other 
programming languages like C++, Java, and javascript. Again, don't worry too much about the 
specifics of this code (or objects for that matter), we will go into more depth later. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

235 

The last line of the code, End Sub, simple states that the code for our procedure is done. Every 
procedure or function you create will need a line like this to tell Excel when to stop executing your 
code. 

Now, just to make sure your macro actually does work and that VBA is not just some conspiracy we 
concocted to make your life's miserable, go to sheet2 (which should be blank) of your workbook. Run 
your macro by going to Tools -> Macro -> Macros and double clicking on Macro1. After 
Excel does its thing, your sheet2 should like identical to your sheet1. 

And now we are finally done with your introduction to VBA. 

2.0 Event Driven Programming and Excel's Object Model 

2.1 Event Driven Programming 
Most older programming languages (like C or Perl) are procedural in nature. That is, a program starts 
from the first line of code and runs straight to the end of the code (with optional branches in code 
execution). With procedural programming, the user reacts to the program, in other words, the 
program might prompt the user for a value and continue executing until it needs some more info from 
the user. 

Event driven programming languages, like VBA, operate in the reverse direction. VBA programs 
react to certain user performed actions (or events) like changing the value of a cell or printing a 
worksheet. Code to react to a certain event is placed in the event's Event Handler. Once this event 
occurs, it is said to be "trapped" by the event handler and any code in the event handler is executed. 

2.2 Object Oriented Programming 
Now that you have some basic info about event driven programming, you might wonder where these 
events come from. As it turns out, VBA is an object aware language (not quite fully object oriented, but 
most of the way there). What this means is that most things your see in Excel are objects. You can 
think of objects as little "black boxes" that magically do what they are intended to do without you 
having to worry about how it does its job. For example, you don't have to know how a car works in 
order to drive one. Objects have properties and methods (or member functions in C++ terminology) 
associated with them. A property describes something about an object, in the car example your 
current speed would be a property of the car object. Most properties can be read and altered through 
your code, but some are read-only (for instance the model of your car is a property of your car, but 
not something you can change). Methods are ways you can communicate with an object and have it 
do something. In the car example hitting the gas pedal would be an example of a method. In this case, 
this method would, among other things, change the current speed property of this object. In a truly 
object oriented environment, you would have no idea how an object implements its methods, just like 
most people don't know (or don't care) what happens when the hit their car's gas pedal, all they care 
about is that once they hit this pedal, their car will speed up (hopefully). 

http://encyclopedia.thefreedictionary.com/Procedural%20programming
http://encyclopedia.thefreedictionary.com/object%20oriented


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

236 

 

2.3 What Exactly is an Object Model? 
So, now that we know about objects, where to we find them? Interestingly enough, most everything 
in Excel is already an object. Their are objects that represent your current workbook, the worksheet 
your are on, each cell on a worksheet, the menu bar, there is even an object for that stupid little 
paperclip that is always bugging you. Objects can even have properties that are objects of their own, 
forming a hierarchy of objects. Interfacing with these objects (through their properties and methods) 
is what VBA programming is all about. The figure on the left shows a very (very) small portion of 
Excel's object model (an object model basically depicts the hierarchy of all the different objects 
available). Everything in Excel actually stems from the Application object (an object that represents 
Excel itself). As you can see, a workbook can have worksheet and chart objects as some of its 
properties (again, this picture does not show all of the properties or methods associated with these 
objects). Some of the methods (in blue) and properties (in green) of the range object (which describes 
a set of cells on a worksheet) are shown also. 

2.4 Accessing Properties and Methods of an Object 
If you looked at your macro recorder generated code from the last section, you probably noticed a lot 
of code like Range("B7:B9").Select. This "dot" notation is actually how properties and 
methods of an object are used. The syntax is Object.Method or Object.Property, if a 
method requires some arguments, then the syntax is Object.Method(arguments). To access 
an object that is a property of another object, simple use this syntax: 
ParentObject.Object.Property. We can use as many dots as necessary to traverse the 
object model. In this example, Range("B7:B9").Select, we are simply calling the Select 
method of the range of cells from B7:B9 (i.e. cells B7, B8, and B9). As is obvious from the name, 
this method simply selects the corresponding range of cells. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

237 

To experiment, go insert the following code in a module of a new workbook: 
Sub DoStuff() 
 
Range("A1:B5").Value = "5" 
 
End Sub 

 
The first and last line of this code should be familiar to you, all we are doing is declaring a new 
procedure named DoStuff. The single line of code says take the range of cells from A1 to B5 and 
change their value property to the number 5. If you run this code on a blank sheet (you can either run 
your code from the Tools -> Macro -> Macros menu as before, or simply click on the run 
button while your cursor is inside your procedure in the VBE) You should something similar to the 
screen shot on the right. 
 

Nothing to surprising, I hope. Now that we have seen how to change an objects property, lets try 
calling a method of an object. Go back to your DoStuff procedure and change your code to: 

Sub DoStuff() 
 
Range("A1:B5").Clear 
 
End Sub 

Running this code should effectively undo what your prior code did. Again, there is nothing tricky 
here, we are simply calling the Clear method of this object to erase whatever values this cells 
currently contain. 

2.5 Collections 
One more important note about accessing objects involves Collections. Collections are container 
objects, that is, they are a set of usually related data. For instance, the Worksheets collection 
contains all of the worksheets in the open workbook. Items in a collection can be referenced either by 
name or by index. For example, we can access sheet1 by using the Worksheets("Sheet1") 
syntax or we can access the first sheet in the collection with the Worksheets(1) syntax. It should 
be noted that collections are objects themselves and can contain other collections, objects, or just 
simple data. In this sense, a collection is VBA's implementation of an object-orinented array (much 
like the VECTOR object in Standard C++). Since collections are themselves objects, there is a 
difference between referencing a property of the collection itself, such as Worksheets.Count, as 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

238 

opposed to referencing a property of an object in a collection, such as 
Worksheets("Sheet2").Name. In the former example, we are dealing with a collection object 
whereas the later example is dealing with a Worksheet object. 

2.6 Help and VBE's Auto-completion 

 

Describing Excel's object model in its entirety would take a book by itself (and such books do exist). 
So how do you know what properties and what methods exist for a given object (or even what objects 
exist)? This is one place where VBA's help and the VBE excel. Use the VBA help whenever you get 
stuck on anything, it is a great resource that fully details the Excel Object Model. If you press F1 
while over a object name (such as Range("A1")), you will get a plethora of information about the 
Range object (click on the image to the left to see a sample of what VBA's help looks like in Excel 
2000). 

 

If you are on a machine with a newer version of Excel that is properly setup (i.e. any computer in the 
world other than the ones in the IEOR labs), you might have noticed that when you typed 
Range("A1:B5"), the VBE popped open a list box full of options (like the image to the right). This list 
box is part of the VBE's auto-complete feature. Whenever you type a "dot" after the name of a known 

javascript:OpenBigPic('Pics/chap2-5p1b.gif',%20805,%20580);


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

239 

object into the VBE, it will give you a list of all of the objects properties and methods. The with the 
finger fondling something are properties and the items with what looks like a green brick flying 
through the air are methods. This way, if you don't know what properties or methods an object 
supports, you can simply type its name and a dot and the VBE will tell you what is available. 

3.0 Variables 

3.1 Variables 
Just like in algebra, Variables in VBA are place-holders for data that can change its value during 
execution of your code. Declaring a variable in VBA tells the computer that you want a certain 
amount of memory reserved for storing these different values. 

3.2 Data Types 
The many different types of data one might want to store (like a number, a set of letters, or a date), 
are referred to as Data Types. When we want to tell the computer that we are planning on using a 
variable, we declare the variable using the Dim command. The following line will create a variable 
(of Integer type) named intExamScore: 

Dim intExamScore As Integer 

Later on in our code, we can assign a value to this variable with the following command: 

intExamScore = 5 

We can now use intExamScore in other expressions just as if we were using the constant 5. For 
instance, we can pass intExamScore as a parameter to a function (or method) that expects an 
integer argument, or we can assign intExamScore to another variable (or property) that has an 
integer type. 

Below are a few of the more common data types and their equivalents in C: 

Data 
Type Description C Equivalent 

Boolean Holds either a true or false value N/A 

Date Holds Dates from 1/1/100 to 12/31/9999 N/A 

Integer Whole numbers between -32,000 and 32,000 int 

Long Long integer, holds from about -2,000,000,000 to 2,000,000,000. long 

Single Single precision number, can hold fractional numbers float 

Double Double precision number, can hold much greater range of fractional numbers double 

String A set of characters (like this sentence) char[] or *char 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

240 

3.3 Object Variables 
 
 

This above list only includes simple variable types (i.e., these are not objects). In a more object 
oriented language (such as Java or C++), even data types are implemented as objects. So for example, 
if you had a string named strName the statement strName.length would tell you the length of 
your string. This is not the case in VBA, but VBA does allow you to create variables to store objects 
(actually these variables store references to the objects). This way you can create a variable to 
reference a sheet or a range of values. The following lines declare a variable that references Sheet1 
and a variable that references cells A1:B2 of Sheet1: 

Dim shtMain As Worksheet 
 
Dim rngMyRange As Range 
 
Set shtMain = Worksheets("Sheet1") 
 
Set rngMyRange = Worksheets("Sheet1").Range("A1:B2") 
 

The first two lines work just as our previous Dim statements, except this time we are using data types 
that are meant for object references. The third line of code assigns a reference to Sheet1 to the 
variable shtMain. You should notice a few things from this line of code. First of all, we are using 
the Worksheets collection, specifically, we are looking for the item named Sheet1 in this collection. 

 
This assignment statement is also different from the one before in that we are using the keyword Set 
before the variable name. The reasoning behind this is a little complicated, but it involves the fact that 
shtMain and rngMyRange are variables that reference objects. As a VBA programmer, we have 
no clue how Excel implements the Worksheet or Range object, but rest assured, it is probably a really 
large and complicated beast. As this is the case with most objects you will deal with, it would be a 
real drag on performance if VBA had to make a complete copy of the Worksheet object every time 
you created a variable referencing it. So instead of making a separate copy, VBA simply assigns a 
"pointer" to this object to your variable (I use quotations around pointer so that you won't confuse this 
terminology with pointers in C or C++). This is why the variable rngMyRange is said to reference a 
range object. In reality, rngMyRange is just another name for 
Worksheets("Sheet1").Range("A1:B2"). This means that if we change rngMyRange, 
we are also changing the actual range object it points to. So when we use the line, Set 
rngMyRange = Worksheets("Sheet1").Range("A1:B2"), we are not actually setting 
rngMyRange equal to anything, instead what we are saying is, set rngMyRange to be a "pointer" 
to Worksheets("Sheet1").Range("A1:B2"). This is a subtle point, but VBA will give 
you an error is you try to simply assign a reference to an object without using the Set keyword. 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

241 

3.4 Naming Conventions 

Data Type Prefix 

Boolean bln 

Date dat 

Integer int 

Long lng 

Single sng 

Double dbl 

String str 

Sheet sht 

Range rng 

Other Objects o 

VBA will allow you to name your variables anything you want, provided your name starts with a 
letter, has no spaces, and that it is not the same as a built in keyword (such as If or Sub). Over the 
years, though, a naming convention for VBA (and VB) has become pretty popular. This naming 
convention prefixes a three letter data type identifier to the beginning of variable names. You might 
have noticed that the variables we have used so far have had such prefixes (rng for Range variables, 
int for Integers, etc.). Variables names that are more than one word are usually written with the first 
letter of each word capitalized such as rngMyRange (this is the method I prefer) or with an 
underscore, such as rngMy_Range. The choice is your, just remember, VBA is not case sensitive, 
but it will capitalize all occurrences of a variable in the same way. While this convention is by no 
means required, it will ensure that you are never uncertain about a variables type while you are 
coding away. Whether or not you use this convention, you should use some convention and stick with 
it, this way your code will be much easier for you, or anyone else to follow. The table on the right 
shows some common prefixes used for different types. 

3.5 The Variant 
Unlike C++ or Java, VBA is not a strictly typed language. This means that you are not required to 
declare what type a variable will be. You might not even required to declare a variable (this depends 
on how you have your VBE set up). For example, the following code will work just fine: 

Sub Test() 
  Dim MyVariable 
  MyVariable = 5 
  MsgBox (MyVariable) 
  MyVariable = "Hello" 
  MsgBox (MyVariable) 
  Set MyVariable = Worksheets("Sheet1") 
End Sub 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

242 

The MsgBox() function simply pops up up a message with whatever argument you pass it. You 
should notice from this code that we never actually declare what type of variable MyVariable is, yet 
we are able to assign a integer (5) to it, a string ("Hello"), and even a reference to Sheet1. Internally, 
VBA treats this variable as a Variant. Variants are variables that can take on any data type that you 
assign to them. This may make variants seem very desirable, but actually you should avoid using 
them at all in your code. Since VBA has no clue what you will store in a variant, it must allocate 
enough space for that variable to allow it to store the largest possible data type you might give it. This 
means that variants have a lot of overhead associated with them and they are very inefficient. Also, 
VBA can not do any error checking for your since it has no clue what you are planning on using 
MyVariable for. So if MyVariable was holding a string and we passed it to a function expecting 
an integer, VBA would have no way of warning us of our error until we actually tried to run our 
program. 
 
Also, since VBA doesn't know what type of variable we are using, the VBE's built in auto-
completeion will not work with variants. So in the above code, if we typed MyVariable. into the 
VBE (after the line Set MyVariable = Worksheets("Sheet1")), the VBE would not give 
us a list of a worksheet's properties and methods even though MyVariable is actually referencing a 
worksheet. 
4.0 Procedures and Functions 

4.1 What are Procedures and Functions 
 
Two of the most important concepts in structured programming are Code Reuse and Encapsulation. 
For example, lets say we are writing a program to calculate a final grade for students based on their 
exam and homework grades in a class. Somewhere in our code we are going to ask the user to enter in 
the homework grades for a specific student. Now, we are going to need to do this for each and every 
student in the class, but we do not want to write the same piece of code over and over again. What we 
would like to do is encapsulate this code in a way that we can use the same code over and over again 
while having it appear in our program only once. We can accomplish this by storing this one piece of 
code in a Procedure or a Function. 
 
Assume now that we have a way to enter student score into our program, we need some way of 
actually calculating a students final grade. Encapsulating this code into a function or procedure (and 
keeping it separate from the rest of our code) helps us to further breakdown our code into small, 
manageable pieces. This also also allows us to change this code without having to alter anything else. 
Lets say that we change our grading policy (like we now wish drop the lowest homework grade for 
each student), all we would have to do is change our one piece of encapsulated code and the rest of 
our program would not know or care. This is the same "black-box" concept as with Objects; we are 
trying to abstract our logic from our implementation. In other words, all we care about is that if we 
give our grade calculating function a set of homework and exam score, we will get back a final grade. 
 
The difference between procedures and functions is that functions can return a single value. So, in our 
above example, we would declare the code to calculate a students grade as a function. This would 
allow us to call the function and store its return value (the students final grade) directly to a variable. 
On the other hand, we would probably define code to print a list of all the students in the class as a 
procedure since it really doesn't need to return any value. 
 

http://www.cyberdyne-object-sys.com/oofaq2/body/basics.htm#S1.2


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

243 

4.1 Declaring Procedures and Functions 
 
We have already seen that the Sub keyword is used to define procedures, functions, surprisingly 
enough, use the Function keyword. Since functions return a value, we must declare the function 
itself as having a return type. Lets say for some reason we wanted a function that will add cells "A1" 
and "A2" on the current sheet and return that value, such as: 
 

Function AddTwoCells() As Integer 
Dim rngCell1 As Range 
Dim rngCell2 As Range 
 

Set rngCell1 = Range("A1") 
Set rngCell2 = Range("A2") 
 

AddTwoCells = rngCell1.Value + rngCell2.Value 
 

End Function 
 

As you can see this function, AddTwoCells, returns an integer value. There are a few other new 
things going on here so lets go over the code in detail. The first two lines (after the function 
declaration) just define two range variables. The next two lines set these variables to the cells A1 and 
A2. You should note that unlike before, we did not specify what sheet these ranges are on. Excel is 
smart enough to assume that we are talking about the current sheet. In this case, we want the function 
to just use the current sheet's values, but in general do not assume that you user is going to be on a 
certain sheet. 
In actuality, Excel has been making such assumptions all along. Remember back when we discussed 
the Excel Object Model? We said that the top most object is the Application object and everything builds 
from there. Despite this, we don't ever say: 
 

Set rngCell1 = 
Application.Workbooks("Book1").Worksheets("Sheet1").Range("A1")  
 

Even though this is the actual location of the range object in the Excel Object Model, we are not 
required to type this out every time we want to access a range. Instead Excel lets us use a couple 
default objects. For instance, we almost never have to specify the Application object, and when 
we don't specify a workbook object, Excel assumes we want to reference the ActiveWorkbook (an 
object that represents the workbook the user is working on). Like wise, when we don't specify a 
specific sheet, Excel assumes we wanted to use the ActiveSheet object.  
 

Now the second to last line of code,  
 

AddTwoCells = rngCell1.Value + rngCell2.Value,  
 
displays how functions in VBA return values. In VBA, functions return values by assigning the return 
value to the function's name. Thus we are treating our function name as a variable and setting that 
variable equal to the value that we want our function to return. The last line of our code simply ends 
the function body much like End Sub ends a procedure's body.  
 

We can't test our function just yet as we can not run a function by itself. Function have to return a 
value to something (the code that is calling the function), so we must create a procedure that will 
simply call this function and do something with its return value. The following procedure  



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

244 

does just this and creates a MsgBox displaying the value of our function. 
 

Sub TestFunction() 
Dim intAnswer As Integer 
 
intAnswer = AddTwoCells 
MsgBox (intAnswer) 
 
End Sub 
 

If we run this code with the values 1 and 3 in cells A1 and A2 of the current sheet, we should get a 
message box indicating that the value of intAnswer is 4. We could have also just used one line of 
code, MsgBox (AddTwoCells), to display the output of AddTwoCells. Notice that when we 
called our function we did not include the parenthesis at the end of the function name. While we 
could have, it is not required since our function does not take any arguments (yet). 
 
4.2 Arguments 
 
While our last function worked as expected, it was quite useless and isn't exactly the kind of code that 
you will need to reuse. Chances are you will never need a function that does no more than simply add 
the values of cells A1 and A2. Lets pretend, however, that you need a function to give you the length 
of the hypotenuse of a right triangle given the length of the other two sides. Good old Pythagoras says 
that A^2 + B^2 = C^2 (where C is the length of the hypotenuse and A and B are the lengths of the other 
two sides). Lets also pretend that such a function might be useful to you (I don't know why, but we 
are pretending, right?). Now, since A and B are not going to be the same (or even known) every time 
this function is called, we are going to have to use Arguments. Arguments allow you to make a 
function (or even a procedure) perform operations on values that are not known during programming 
time. In other words, a function can be called different times with different arguments and still 
perform the same operation. In this case, we want our function to solve for C in the above equations, 
given a value of A and B. So our code will now look like: 

Function GetHypotenuse(dblSideOne As Double, dblSideTwo As 
Double) As Double 
 
GetHypotenuse = Sqr(dblSideOne ^ 2 + dblSideTwo ^ 2) 
 
End Function 

As you can see, adding arguments to a function is as easy as listing those arguments (along with their 
types) inside the parenthesis directly after the function's name. Argument declarations look identical 
to normal variable declarations except that the Dim keyword is missing. Here, we defined the two 
arguments, dblSideOne and dblSideTwo, as doubles, since triangle sides can have fractional 
lengths. When we are calling a function with arguments, we must always make sure that we pass the 
right number and type of arguments, and that we put the arguments in the same order as what the 
function is expecting. We also used the Sqr() function which gives us the square root of a number.  
This code gets the job done, but now lets assume that we want the code to look for values for A and B 
on cells of our worksheet. We can now change the function to: 

http://www.davis-inc.com/pythagor/proof2.html


  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

245 

 
Function GetHypotenuse2(rngSideOne As Range, rngSideTwo As Range) As 
Double 
If Not (IsNumeric(rngSideOne.Value) And (rngSideOne.Value > 0)) Then 
    MsgBox ("Error, first argument must be a positive number") 
    Exit Function 
End If 
If Not (IsNumeric(rngSideTwo.Value) And (rngSideTwo.Value > 0)) Then 
    MsgBox ("Error, second argument must be a positive number") 
    Exit Function 
End If 
GetHypotenuse2 = Sqr((rngSideOne.Value) ^ 2 + (rngSideTwo) ^ 2) 
End Function 
 
 

This time, we are expecting arguments that are object references (here, they are references to Range 
objects). As you can see, using object references for arguments is no different then using simple 
variables types. The function also introduces some basic error checking and the use of the If 
statement. If statements work in VBA much the same as the do in other languages, except the syntax 
is quite different. In VBA, the syntax for an If statement is as follows: 

 
If <condition> Then 
<if body> 
End If 

 
 
 
 
 
 
 
 
 
 
 
If our <condition> is true, then the lines of code in <if body> are executed. Conditional 
statements are the same as in any other language, and the comparison operators are given in the above 
table. Take care to note the differences between VBA and C for the “equal to” and “not equal to” 
operators. 
Inside or If condition, we use the built in function IsNumeric() to determine if the contents of 
the specified ranges are numeric, and if so we check if their values are greater than zero. This should 
make sense, as we can not solve Pythagorean Theorem's if we do not have numeric (and positive) 
values. If either of the two arguments fail this test, we indicate as such with a message and then exit 
the function to ensure that no further action is taken by our function.  
As mentioned earlier, the only difference between functions and procedures is that functions can 
return a value, as such creating a procedure that accepts arguments is identical to what we have 
already done (with the obvious use of Sub and End Sub as opposed to Function and End 
Function). 

Expression Description 

> greater than 

< less than 

<> not equal to 

>= greater than or 
equal to 

<= less than or 
equal to 

= equal to 

Not Not condition 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

246 

 
4.3 Local Variables 
 
Any variable that is declared inside a function or procedure is consider local to that function or 
procedures. In other words, this variable can not be accessed by any code outside of the procedure or 
function it is declared in. As such, local variables can have the same name as variables in other 
functions (or procedures) without any ambiguity between the variables. Take, for example, the 
following two procedures that each declare a variable named intX:  
 

Sub Procedure1() 
Dim intX As Integer 
intX = 5 
Procedure2 
End Sub 
Sub Procedure2() 
Dim intX As Integer 
intX = 8 
MsgBox (intX) 
End Sub 
 

When Procedure1 calls Procedure2, Procedure2 is not aware of Procedure1's intX. So 
the output of running Procedure1 is a popup message indicating a value of "8". 
 
5.0 Debugging and the Visual Basic Editor 
 
5.1 Debugging Your Code 
 
It would be great if all of our code worked the way we intended it to all the time. In reality, this rarely 
happens and our code might end up giving us unexpected results. Debugging our code gives us a 
good way to figure out what is going on. Since VBA is an interpreted language, it provides us with 
great debugging facilities. Lets assume we have the following code in our project: 

Sub FillRange() 
Dim rngFill As Range 
Dim iRows As Integer 
Dim iCols As Integer 
 
 
Set rngFill = Range("A1") 
For iRows = 0 To 9 
    For iCols = 0 To 9 
        rngFill.Offset(iRows, iCols).Value = iCols + 10 * 
(iRows) 
    Next 
Next 
 
End Sub 
 

We haven't seen a for loop before, so lets review that first. The basic syntax for a for loop is: 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

247 

For <index> = <start> To <end> Step <step> 
 <for body> 
Next 

There is nothing too complicated going on. On the first time through the loop the variable <index> 
is set to <start> and <for body> is executed. The next time through, <index> is set 
incremented by the value of <step> and the body is executed again. This process continues until 
<index> equals <end>. In our example, we did not include the Step value (when it is omitted, VBA 
assumes a step value of one). We also nested one for loop inside of another, which is perfectly legal. 
5.2 Stepping Through Your Code 
 

 
Now you may already be able to tell what this code is going to do, if not, don't worry we are going to 
use VBA's debugging tools to "step" through the code. Once you have entered this code into the 
VBE, go to Debug -> Step Into (press F8) while your cursor is somewhere in the code. You 
should see something like the picture on the right. VBA will now begin to execute you code one line 
at a time, with the yellow highlighting indicating your current line. From now on, every time you 
press F8 the currently highlighted line will be executed. So press F8 two more times until the line 
For iRows = 0 To 9 is selected. 

Lets say we are interested in seeing what our for loop does to the variable iRows. On the current 
line, select the word iRows and go to Debug -> Add Watch or simply right click and select Add 
Watch. You should see something like the following: 

 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

248 

Go ahead and press OK. Now press F8 one more time and add another watch for iCols. When we 
add a variable to our "watch" list, we are telling the VBE that we want it to constantly check and 
display the value of this variable. You should notice that on the bottom of your VBE there will be a 
new window named Watches. Your VBE should look something like this. As you continue to step 
through your code with the F8 key, you will see that the Watch window constantly keeps you up to 
date on the values of iRows and iCols. If you just want to see the value of a variable while you are 
in debug mode, you can simply hold your mouse cursor over the variable name in code and the VBE 
will display its value. 

If you want to see what is going on with your worksheet, simple switch back to excel while you are 
still in debug mode (i.e. there is still a highlighted line of code). While in this mode, you can easily 
switch back and forth between Excel and the VBE to see what your program is doing. To exit debug 
mode, either press F5 (to finish running your code) or press the blue stop button to stop execution of 
your code. 

5.3 The Immediate Window 
If, like me, you are too lazy to set up watches for different variables, you can accomplish the same 
task through the Immediate Window. Lets step into our code again using F8 until we have completed 
a few loops of our inner for loop. While on of our lines is highlighted, we can go to the Immediate 
Window and type ?iRows. You should get a response with the current value of iRows. Anytime 
you enter a command into the Immediate Window preceded by a question mark, you will get the 
return value of that command spit back to you in the Immediate Window. Try entering 
TypeName(iRows) into the window, you should get Integer as the response. The function 
TypeName() will return a string representing the type of the argument you give it. 

The Immediate window is not limited to giving you values of commands. You can run practically any 
command in this window, including commands that change variable values. To run regular 
commands in this window, just type in the commands without a preceding question mark. Try, for 
instance, iRows = 20. Now press F8 a couple more times until you complete enough full loops of 
the inner loop for control to jump back out to the outer loop, you should notice that your code will not 
loop anymore as iRows is now 20, which is above the ending value of your outer loop. Check out 
your output on your Excel sheet as well, there should now be some values in row 21 of your sheet, 
indicating that iRows did indeed change its value. 

In the debug menu there are also options for Stepping Over and Stepping Out. These 
commands work just like Step Into except that they will either step over function and procedure 
calls (i.e., the VBE will treat a function call as a single statement as opposed to stepping into the 
function and requiring you to step through each line of the function as well) or will step out of a 
function or procedure if you are already inside one. 

5.4 Breakpoints 
What happens if you know that a specific part of your program is giving you trouble? You could use 
F8 and step through your entire program until you reached that part, but that seems like a pain in the 
butt. Instead, we can use breakpoints to indicate where we want our code to stop. If you go to a 
specific line of code and press F9 (or go to Debug -> Toggle Breakpoint), that line should 
turn burgundy and a dot should appear next to it on the left. Pressing F9 will remove the coloring and 
the dot (and clear the breakpoint). Once you have set a breakpoint at a certain line (you can have as 



  

 
     ©Copyright D.L. Schruben and L.W. Schruben – all rights reserved.               Written permission required for reproduction, distribution, or quotation. 
 

249 

many breakpoints as you wish), you can run your code as normal and it will automatically stop and 
put you in debug mode when your code reaches a breakpoint. 

5.5 The Object Browser 

 

Earlier we discussed the Excel Object Model and how complicated it was. The VBE provides an easy 
way to find objects and their properties or methods. When in the VBE press F2 or go to View -> 
Object Browser. You should now see a window like the one on the left (click on image for a 
larger view). From here you can search for an object by either scrolling up and down on the list to the 
left or by typing a name in the drop down box on top and pressing enter. If we scroll down on the left 
until we hit the Workbook object, we can see a list on the right of all its properties and methods. 
From here you can press F1 to get help on anything you need more info on. 
 
 
 
 


	CONTENTS
	Chapter 1   SIGMA: Overview & Installation 1
	Chapter 2   Discrete Event System Modeling 6
	Chapter 3   A Tutorial on the Basics of SIGMA 21
	Chapter 4   Running A SIGMA Simulation 29
	Chapter 5   Event Graph Modeling 37
	Chapter 6   Building Models, Verifying Simulations, and  77
	Sharing the Results of Simulation Experiments
	Chapter 7   Using SIGMA Functions 91
	Chapter 8  Building Animations 115
	Chapter 9   Modeling Input Processes 127
	9.10.1 Distribution Function Inversion 133
	9.10.3 Generating Non-Homogeneous Poisson Processes 135
	Chapter 10   Graphical & Statistical & Output Analysis 139
	Chapter 11 Generating Source Code for SIGMA Models 151
	and Running Simulations from a Spread Sheet
	Chapter 12   Advanced Programming Techniques 196
	Appendix A: Event Execution Sequence 204
	Appendix B: Reading SIGMA-Generated C Programs 206
	SIGMA
	Hardware Recommendations
	File Name Extensions
	Extension
	SIGMA: Overview & Installation
	1.1 The SIGMA Modeling Environment
	1.2 Single-step Installing and Uninstalling SIGMA
	1.3 A Quick Tour of SIGMA
	Figure 1.1:  A Simulation Model of a Carwash, CARWASH.MOD
	A Tutorial on the Basics of SIGMA
	3.1 Starting a SIGMA Session
	Figure 3.1:  SIGMA's Simulation Graph Window
	Figure 3.2:  SIGMA Toolbar
	Figure 3.3:  An Event Graph for a Single Server Queue, CARWASH.MOD
	Figure 3.4:  The State Variable Editor Dialog Box
	Figure 3.5:  The Dialog Box for the RUN Vertex
	Figure 3.6:  Edge Dialog Box from RUN Vertex to ENTER Vertex
	Unconditional edges test the condition (1==1), which is always true.
	Figure 3.7:  Multiple Edge Dialog Box between START and  LEAVE Vertices
	Q  = number of jobs in line

	Event
	Priority
	Event
	Priority
	Attributes


	Representing
	Type of Entity
	Active Bitmap
	Inactive Bitmap



	Z=W*(O)+Q*(1)=Q
	EVENT DEFINITIONS
	The event relationship graph for the model is as follows:
	The Three Worksheets in the Simulator
	The Two Forms used in the Simulator
	Open the XL-interface by  double clicking on SERVICE.XLS
	Frames
	Command Button
	Textbox
	Option Buttons
	ComboBox
	Image Control
	WriteDataFile subroutine: Creating the timing data file and experiment file

	We discussed the WriteDatafile subroutine earlier. Now we look at the details in the RunExe subroutine. The subroutine RunExe is also defined in Module1.
	Creating plots showing the simulation results: The GetResults subroutine will open an output file, create a plot for the output, copy this plot to the main XL-interface, and finally close the output file.  If n (n ≤ 10) experiments are performed, this...

	Step 7. Miscellaneous details
	Set default starting worksheet to the Main worksheet: Rather than have Excel start where the last session ended, it is better to direct the user to the “Main” worksheet when the spreadsheet is opened. This done by the code in the ThisWorkbook object i...
	Stop screen flashing by using Application.ScreenUpdating = False: If you run 10 experiments, there will be 10 output files and GetResults will open them one by one cause screen flashes. To stop the screen from flashing repeatedly, include the followin...
	Clear plots when exiting to save space: Since the plots could contain an enormous of data, it is recommended that you clear them when closing the spreadsheet. This code is also found under the ThisWorkbook object.

	Appendix A
	Event Execution Sequence
	a. If the edge is a vertex scheduling or pending edge,
	b. If the edge is a vertex cancelling edge,
	Overview of Visual Basic for Applications2F
	This appendix will acquaint you with Visual Basic for Applications. Like all flavors of Visual Basic, VBA is large and dynamic. People are creating new and useful VBA objects and codes all the time. You do not “learn” VBA in the conventional sense, yo...
	After a quick introduction to VBA showing the basics for creating an Excel User Interface for your Model, the following topics are covered.
	1.0 Introduction to VBA
	Creating the EXP file
	The FileSystemObject
	Writing to Our EXP File
	Executing Our Model
	Starting Our Model
	1.1 What is VBA?
	1.2 The Visual Basic Editor (VBE)
	1.3 VBA Modules
	Inserting a new module

	2.1 Event Driven Programming
	2.2 Object Oriented Programming
	2.3 What Exactly is an Object Model?
	2.4 Accessing Properties and Methods of an Object
	2.5 Collections
	2.6 Help and VBE's Auto-completion
	3.1 Variables
	3.2 Data Types
	3.3  Object Variables
	3.4 Naming Conventions
	3.5 The Variant
	4.1 What are Procedures and Functions
	4.1 Declaring Procedures and Functions
	4.2 Arguments
	4.3 Local Variables
	5.1 Debugging Your Code
	4.3 Local Variables
	5.1 Debugging Your Code
	4.3 Local Variables
	5.1 Debugging Your Code
	4.3 Local Variables
	5.1 Debugging Your Code


